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Preface

This dissertation is devoted to determining sharp bounds on the expectations and variances of
linear combinations of order statistics and kth records based on independent and identically
distributed random variables. Order statistics arise in a natural way by ordering random
variables in the ascending order. Classic first upper record values are the observations that
are greater than all the preceding ones. Their extensions, so called kth upper records, are
the new values appearing at the kth upper position in the sequence of ordered observations.
Order statistics and their linear combinations, called L-statistics, play a vital role in statistical
inference. Moreover, they are extensively used in survival analysis, reliability theory, and
treatment of censored data. Record values are applied for prediction of catastrophes, and
extreme events in nature and sports.

Many evaluations of expectations of linear combinations of order and record statistics were
presented in the literature. The novelty of our results consists in measuring the respective
bounds in the scale units being the Gini mean difference of the population. The Gini mean
difference of a probability distribution is the expectation of the absolute value of the difference
of two independent copies of random variables with the parent distribution. The Gini mean
difference becomes a popular and useful measure of dispersion. One of its virtues is that it
can be defined under assumption of finiteness of the first population moment only (note that
the standard deviation which is the most popular scale unit requires existence of the second
moment). We prove that our bounds on the expectations of linear combinations of order and
record statistics are sharp, and describe conditions of their attainability.

Much less is by now about bounds on variances of ordered random variables. Our bounds
on variances of linear combinations of order statistics and kth record values are expressed in
variance units of the original i.i.d. observations. Until now only bounds on variances of single
order statistics and single kth records were presented in literature. We describe bounds
on variances of arbitrary linear combinations of order and record statistics, and present
conditions of their attainability. We also specify general results for single order and record
statistics and their increments.

The main idea of our reasoning consists in integral representation of the expectations,
variances and covariances of order and record statistics so that the integrand is the compo-
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sition of some (usually complicated) function with the baseline distribution function. The
thesis is organized as follows.

Chapter 1 contains some essential information which is used in the next chapters. We
present some distributional properties of order statistics and kth record values. Moreover,
variation diminishing property (VDP, for short) of some families of functions is also intro-
duced in this chapter. The property asserts that a linear combination of a sequence of
functions has no more sign changes than the respective sequence of combination coefficients.
This is a useful tool in our studies.

In Chapter 2, it is provided a method of calculating sharp lower and upper bounds on the
expectations of arbitrary, properly centered L-statistics expressed in the Gini mean difference
units of the original i.i.d. observations. Precise values of bounds are derived for the single
order statistics, their differences, and some most popular examples of L-statistics such as:
the trimmed means, Winsorized means, and mean absolute deviation from the median. It
also presents the families of discrete distributions which attain the bounds, possibly in the
limit. This chapter is based on the paper by Kozyra and Rychlik (2017a).

In Chapter 3 we first describe the idea of obtaining lower and upper bounds on the
variances of arbitrary linear combinations of order statistics and sufficient conditions of their
attainability. Then we provide tight bounds for some special cases. We remind the results
of Papadatos (1995) who presented sharp lower and upper bounds on the variances of single
order statistics expressed in the population variance units. Then we determine analogous
results for spacings, i.e. differences of consecutive order statistics. Finally, we determine the
upper bounds on the variances of linear combinations spacings based on three observations.
This example shows that establishing optimal bounds for general L-statistics is actually a
challenging task. The most of the results of this chapter were presented in Kozyra and
Rychlik (2017b).

Chapter 4 is entirely based on the paper by Kozyra and Rychlik (2017c). Here we describe
a method of calculating sharp lower and upper bounds on the expectations of linear combi-
nations of kth records expressed in the Gini mean difference units of parent distribution. In
particular, we provide sharp lower and upper bounds on the expectations of kth records and
their differences. We also present the families of distributions which attain the bounds in the
limit.

Chapter 5 is devoted to the study of bounds on the variances of linear combinations of
kth record values. Some upper evaluations are presented, together with conditions of their
sharpness. We also point out assumptions under which the lower variance bounds trivially
become zero. Then some special cases are treated. We cite results of Klimczak and Rychlik
(2004) where sharp bounds on variances of single kth record values were presented. They
were more precisely specified by Jasiński (2016). Then we provide similar sharp bounds for
the kth record spacings which are defined as the differences between adjacent kth record

x



values. The results of the chapter were earlier presented in Kozyra and Rychlik (2017d).
Acknowledgments. The author is grateful to professor T. Rychlik for checking this text

as well as for comments. Some sophisticated calculations were performed with help of Maple
software version 18.
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Notation

N — set of natural numbers (0 /∈ N)
R — set of real numbers
i.i.d. — independent identically distributed
VDP — variation diminishing property
F (x) — distribution function
µ = EX — expectation of random variable X
VarX — variance of random variable X
Cov(X, Y ) — covariance of random variables X and Y
∆ = E|X1 −X2| — Gini mean difference (X1, X2 are i.i.d.)
Xk:n — kth order statistic based on n random variables X1, . . . , Xn

Si:n = Xi+1:n −Xi:n — ith spacing of order statistics based on X1, . . . , Xn

FX
k:n(x) — marginal distribution function of Xk:n based on i.i.d. random variables

X1, . . . , Xn with general distribution function F , see (1.1.1), p. 2
FX
i,j:n(x, y) — joint distribution function of Xi:n and Xj:n based on i.i.d. random

variables X1, . . . , Xn with general distribution function F , see (1.1.2),
p. 3

FU
k:n(u) — marginal distribution function of kth order statistic based on n i.i.d.

standard uniform random variables
FU
i,j:n(u, v) — joint distribution function of ith and jth order statistics based on

n i.i.d. standard uniform random variables
Bk,m(u) =

(
m
k

)
uk(1− u)m−k, 0 < u < 1, k = 0, . . . ,m, — kth Bernstein polynomial

of degree m(
n
a,b

)
= n!

a!b!(n−a−b)! — trinomial coefficient

Rn,k — nth value of kth (upper) record
FX
n,k(x) — marginal distribution function of nth value of kth record based on i.i.d.

sequence X1, X2, . . . with general continuous distribution function F ,
see (1.2.5), p. 6

xiii



FX
m,n,k(x, y) — joint distribution function of mth and nth values of kth records

based on i.i.d. sequence X1, X2, . . . with general continuous
distribution function F , see (1.2.6), p. 6

FU
n,k(u) — marginal distribution function of nth value of kth record based on

i.i.d. standard uniform sequence
FU
m,n,k(u, v) — joint distribution function of mth and nth value of kth record

based on i.i.d. standard uniform sequence
Ξc(u) — see (2.1.2), p. 14
Ξr:n(u) — see (2.2.1)–(2.2.5), p. 18–19
Ξr,s:n(u) = Ξs:n(u)− Ξr:n(u) — see (2.3.1), p. 21
Φc(u, v) — see (3.1.1), p. 38
Ψc(u) = Φc(u, u) — see (3.1.2), p. 38
Φi:n(u, v) — see (3.3.1), p. 42
Ψi:n(u) = Φi:n(u, u) — see (3.3.2), p. 42
ξn,k(u) — see (4.1.2), p. 56

Ξn,k(u) =
ξn,k(u)

2u
, see (4.1.3), p. 56

ξc,k(u) — see (4.1.4), p. 56

Ξc,k(u) =
ξc,k(u)

2u
, see (4.1.5), p. 56

Ξm,n;k(u) = Ξn,k(u)− Ξm,k(u), see (4.3.1), p. 67
Φc,k(u, v) — see (5.1.1), p. 76
Ψc,k(u) = Φc,k(u, u) — see (5.1.2), p. 76
Φm,k(u, v) — see (5.3.1), p. 81
Ψm,k(u) = Φm,k(u, u)
ψm,k(u) = uΨm,k(u)
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Chapter 1

Preliminaries

In this chapter we define order statistics and kth record values. In the cases when they are
based on independent and identically distributed (i.i.d., for brevity) random variables, we
determine their one- and two-dimensional marginal distribution functions. Then we use the
respective formulae for establishing integral representations of variances and covariances of
order and record statistics. Finally we describe so called variation diminishing property of
selected sequences of functions. The property is frequently used in our further analysis.

1.1 Order statistics

1.1.1 Definition, L-statistics, and spacings

Consider n variablesX1, . . . , Xn defined on the same probability space (Ω,F,P). If we arrange
these variables in increasing order, we obtain order statistics X1:n ≤ . . . ≤ Xn:n. Linear
combinations of order statistics

∑n
i=1 ciXi:n with fixed real coefficients c1, . . . , cn is called L-

statistics. L-statistics are widely applied in statistical inference. For instance, the trimmed
and Winsorized means are used for estimating location of populations, whereas mean absolute
deviation from the median and sample range are popular measures of scale. Other useful
examples of L-statistics are spacings defined as Si:n = Xi+1:n −Xi:n for i ∈ {1, . . . , n− 1}.

1.1.2 Distribution functions

Now we consider n i.i.d. random variables X1, . . . , Xn with common distribution function F .
It is obvious that for any x ∈ R:

FX
n:n(x) = P(Xn:n ≤ x) = P(X1 ≤ x, . . . , Xn ≤ x) =

n∏
i=1

P(Xi ≤ x) = F n(x).
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Similarly

FX
1:n(x) = P(X1:n ≤ x) = 1− P(X1:n > x)

= 1− P(X1 > x, . . . , Xn > x) = 1−
(
1− F (x)

)n
.

In general case for any k ∈ {1, . . . , n} and x ∈ R we have

FX
k:n(x) = P(Xk:n ≤ x)

= P(at least k variables among X1, . . . , Xn are not greater than x)

=
n∑

m=k

P(exactly m variables among X1, . . . , Xn are not greater than x)

=
n∑

m=k

(
n

m

)
Fm(x)

(
1− F (x)

)n−m
. (1.1.1)

Observe that the distribution function of single order statistic can be represented with use
of Bernstein polynomials of degree n

Bm,n(u) =

(
n

m

)
um(1− u)n−m, 0 < u < 1, m = 0, . . . , n,

as follows

FX
k:n(x) =

n∑
m=k

Bm,n(F (x)).

Similarly we obtain the joint distribution of ith and jth order statistics from observations
X1, . . . , Xn for 1 ≤ i < j ≤ n. If x ≥ y, then obviously

FX
i,j:n(x, y) = P (Xi:n ≤ x,Xj:n ≤ y) = P (Xj:n ≤ y) = FX

j:n(y).

2



If x < y, then

FX
i,j:n(x, y) = P (Xi:n ≤ x,Xj:n ≤ y)

= P(at least i variables among X1, . . . , Xn belong to (−∞, x]

and at least j variables among X1, . . . , Xn belong to (−∞, y])

=
n∑
s=j

s∑
r=i

P(exactly r variables among X1, . . . , Xn belong to (−∞, x]

exactly s variables among X1, . . . , Xn belong to (−∞, y])

=
n∑
s=j

s∑
r=i

P(exactly r variables among X1, . . . , Xn belong to (−∞, x]

and exactly s− r variables among X1, . . . , Xn belong to (x, y]

and exactly n− s variables among X1, . . . , Xn belong to (y,∞))

=
n∑
s=j

s∑
r=i

(
n

r, s− r

)
F r(x)

(
F (y)− F (x)

)s−r(
1− F (y)

)n−s
,

where
(
n
a,b

)
= n!

a!b!(n−a−b)! . Summing up, we have

FX
i,j:n(x, y) =

{∑n
s=j

∑s
r=i

(
n

r,s−r

)
F r(x)

(
F (y)− F (x)

)s−r(
1− F (y)

)n−s
, x < y,∑n

m=j

(
n
m

)
Fm(y)

(
1− F (y)

)n−m
, x ≥ y.

(1.1.2)

Clearly, we obtain analogous distribution functions FU
k:n F

U
i,j:n in the standard uniform case by

replacing F (x) and F (y) in the right-hand sides of (1.1.1) and (1.1.2) by x and y, respectively,
from interval (0, 1). The above formulae can be found in monographs, see, e.g., David and
Nagaraja (2003, pp. 9 and 12) and Nevzorov (2000, pp. 6–7).

1.2 kth records values

1.2.1 Definition, record spacings

Let X1, X2, . . . be a sequence of real random variables. The first (upper) records, introduced
by Chandler (1952), are these elements of the sequence which exceed all their predecessors.
More general notions, presented in Dziubdziela and Kopociński (1976), are so called (upper)
kth records which are new (greater than previous ones) kth greatest elements of samples
X1, . . . , Xn when n increases from k to infinity.
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Precisely, for a given k ∈ N, Dziubdziela and Kopociński (1976) defined the kth record
times Tn,k and the kth record values Rn,k as follows:

T1,k = 1,

Tn+1,k = min{j > Tn,k: Xj:j+k−1 > XTn,k:Tn,k+k−1},
Rn,k = XTn,k:Tn,k+k−1, n ∈ N,

where Xi:n stands for the ith order statistic obtained from the first n observations. There
is another convention of defining record times as L(n, k) = Tn,k + k − 1 in connection with
the number of random variables observed till the time the respective kth record occurs (see,
e.g., Nevzorov, 2000, p. 82). The choice of convention does not affect the definition of record
values.

The nth spacing of kth records is defined as the nth increment of kth records Rn+1,k−Rn,k,
n ∈ N.

1.2.2 Distribution functions

From now on, we assume that random variables X1, X2, . . . are i.i.d. with a common con-
tinuous distribution function F . Under the assumption, the first value of first records is
just the first observation X1. It is intuitively obvious that the distribution of Rn+1,1 under
condition that Rn,1 = x is identical with the distribution of the original random variable X1

under condition that X1 > x. In other words, distribution of Rn+1,1 − Rn,1 under condition
Rn,1 = x coincides with the distribution of X1 − x under condition X1 > x. This implies
in the case of i.i.d. standard exponential sequence Z1, Z2, . . . by the lack of memory of the
exponential distribution that the first record value Z1,1 and consecutive first record spacings
Z2,1 −Z1,1, Z3,1 −Z2,1, . . . are also i.i.d. standard exponential (cf., Nevzorov, 2000, Corollary
15.7). It further follows that Zm,1 and Zn,1 − Zm,1 for any 1 ≤ m < n are independent and
have Erlang (gamma) distributions with unit scale parameter and shape parameters m and
n−m, respectively. In particular, Zm,1 has distribution function

FZ
m,1(x) = 1− e−x

m−1∑
i=0

xi

i!
, x > 0.

Moreover, Zm,1 and Zn,1 = Zm,1 + (Zn,1 − Zm,1) have the joint density function

fZm,n,1(x, y) =
xm−1(y − x)n−m−1e−y

(m− 1)!(n−m− 1)!
0 < x < y.

(cf Arnold et al, 1998, p. 11). This allows us to calculate the joint distribution function of
Zm,1 and Zn,1. When x ≥ y > 0, we obtain the marginal distribution function of the latter
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variable

FZ
m,n,1(x, y) = P(Zm,1 ≤ x, Zn,1 ≤ y) = P(Zn,1 ≤ y) = FZ

n,1(y) = 1− e−y
n−1∑
i=0

yi

i!
.(1.2.1)

If 0 < x < y, then

FZ
m,n,1(x, y) =

∫ x

0

sm−1

(m− 1)!
ds

∫ y

s

(t− s)n−m−1

(n−m− 1)!
e−t dt

=

∫ x

0

sm−1

(m− 1)!
ds

∫ y−s

0

tn−m−1

(n−m− 1)!
e−t dt

=

∫ x

0

sm−1

(m− 1)!

[
1− es−y

n−m−1∑
i=0

(y − s)i

i!

]
ds

= 1− e−x
m−1∑
i=0

xi

i!
− e−y

n−m−1∑
i=0

∫ x

0

sm−1(y − s)i

(m− 1)!i!
ds

= FZ
m,1(x)− e−y

n−m−1∑
i=0

i∑
j=0

(−1)jxm+jyi−j

(m− 1)!j!(i− j)!(m+ j)
. (1.2.2)

The first value of kth record is the minimum X1:k of first k observations X1, . . . , Xn.
In the i.i.d. case, under condition that Rn,k = x, the next kth record value Rn+1,k has the
distribution as the minimum of k independent copies of original variables which exceed level
x. This means that R1,k, R2,k, . . . based on an i.i.d. sequence with distribution function
F have the same joint distribution as the sequence of first records based on i.i.d. sequence
min{X1, . . . , Xk},min{Xk+1, . . . , X2k}, . . . with the baseline distribution function 1−(1−F )k

(cf. Nevzorov, 2000, Theorem 22.6). In the case of standard exponential parent distribution
function F , transformation F 7→ 1 − (1 − F )k leads to the exponential distribution with
scale parameter 1

k
which means that Z1:k and Z1

k
have identical distributions. Therefore the

sequences of kth records Z1,k, Z2,k, . . . and first records Z1,1

k
, Z2,1

k
, . . . divided by k are identi-

cally distributed as well. Accordingly, the one- and two-dimensional marginal distribution
functions of kth records based on standard exponential sequences are

FZ
n,k(x) = FZ

n,1(kx),

FZ
m,n,k(x, y) = FZ

m,n,1(kx, ky).

It is obvious that strictly increasing transformations h(X1), h(X2), . . . of original ran-
dom variables preserve strict ordering. In consequence, h(R1,k), h(R2,k) . . . constitute kth
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record values in the transformed sequence h(X1), h(X2), . . . In particular, function h(x) =
F−1(1 − exp(−x)), where F−1 is the quantile function of continuous distribution function
F , is strictly increasing. This implies that F−1(1 − exp(−Z1)), F−1(1 − exp(−Z2)) . . . is a
sequence of i.i.d. random variables with parent distribution function F , whereas F−1(1 −
exp(−Z1,k)), F

−1(1− exp(−Z2,k)) . . . is the corresponding sequence of kth records (see, Nev-
zorov, 2000, Representation 22.1). Therefore

FX
n,k(x) = FZ

n,k

(
− ln

(
1− F (x)

))
= FZ

n,1

(
− k ln

(
1− F (x)

))
, (1.2.3)

FX
m,n,k(x, y) = FZ

m,n,k

(
− ln

(
1− F (x)

)
,− ln

(
1− F (y)

))
= FZ

m,n,1

(
− k ln

(
1− F (x)

)
,−k ln

(
1− F (y)

))
. (1.2.4)

Combining (1.2.1) and (1.2.2) with (1.2.3) and (1.2.4), we finally obtain

FX
n,k(x) = 1− [1− F (x)]k

n−1∑
i=0

[
− k ln

(
1− F (x)

)]i
i!

, (1.2.5)

FX
m,n,k(x, y) =


1− [1− F (x)]k

∑m−1
i=0

[
−k ln

(
1−F (x)

)]i
i!

− [1− F (y)]k

×
∑n−m−1

i=0

∑i
j=0

(−1)j
[
−k ln

(
1−F (x)

)]m+j[
−k ln

(
1−F (y)

)]i−j

(m−1)!j!(i−j)!(m+j)
, x<y,

1− [1− F (y)]k
∑n−1

i=0

[
−k ln

(
1−F (y)

)]i
i!

, y≤x.

(1.2.6)

Clearly, writing x and y instead of F (x) and F (y), respectively, in the right-hand sides of
(1.2.5) and (1.2.6), we obtain the distribution functions FU

n,k and FU
m,n,k of kth records based

on standard uniform sequence.

1.3 Variances and covariances of order statistics and

kth records

We use the Hoeffding (1940) formula for the covariance

Cov(X, Y ) =

∫∫
R2

[H(x, y)− F (x)G(y)]dxdy (1.3.1)

of random variables X and Y with joint distribution function H and marginals F and G,
respectively (for a simple proof, see Lehmann, 1966). Note that either of conditions F (x) = 0
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and G(y) = 0 implies H(x, y) = 0. Similarly, when from F (x) = 1 and G(y) = 1 follows that
H(x, y) = G(y) and H(x, y) = F (x), respectively. Therefore, we can rewrite (1.3.1) as

Cov(X, Y ) =

∫∫
0<F (x),G(y)<1

[H(x, y)− F (x)G(y)] dxdy. (1.3.2)

Using (1.3.1), we also obtain

Var X = Cov(X,X) =

∫∫
R2

[F (min{x, y})− F (x)F (y)]dxdy

= 2

∫∫
0<F (x)≤F (y)<1

F (x)[1− F (y)] dxdy. (1.3.3)

Note that each FU
k:n and FU

n,k is strictly increasing transformation of [0, 1] onto [0, 1].
Therefore

{0 < F (x) ≤ F (y) < 1} = {0 < FU
k:n

(
F (x)

)
≤ FU

k:n

(
F (y)

)
< 1}

= {0 < FU
n,k

(
F (x)

)
≤ FU

n,k

(
F (y)

)
< 1}.

By (1.1.1) and (1.3.3) we get

Var Xk:n = 2

∫∫
0<F (x)≤F (y)<1

FU
k:n

(
F (x)

)
[1− FU

k:n

(
F (y)

)
] dxdy

= 2

∫∫
0<F (x)≤F (y)<1

[
n∑

m=k

Bm,n

(
F (x)

)] [ k−1∑
m=0

Bm,n

(
F (y)

)]
dxdy.

Similarly, from (1.2.5) and (1.3.3) we conclude

Var Rn,k = 2

∫∫
0<F (x)≤F (y)<1

FU
n,k

(
F (x)

)
[1− FU

n,k

(
F (y)

)
] dxdy

= 2

∫∫
0<F (x)≤F (y)<1

[
1− [1− F (x)]k

n−1∑
i=0

[
− k ln

(
1− F (x)

)]i
i!

]

× [1− F (y)]k
n−1∑
i=0

[
− k ln

(
1− F (y)

)]i
i!

dxdy

In order to write down the covariances of order and record statistics in a relatively concise
forms, we make the following observations. We represent FX

k,m:n(x, y) for x < y as

FX
k,m:n(x, y) = FX

k:n(x)− F̃X
k,m:n(x, y),
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where

F̃X
k,m:n(x, y) = P(Xk:n ≤ x,Xm:n > y)

= P(at least k among X1, . . . , Xn are not greater than x,

and at least n−m+ 1 among them are greater than y)

= P(at least k among X1, . . . , Xn are not greater than x,

and at mostm− 1 among them are not greater than y)

=
m−1∑
j=k

j∑
i=k

P(exactly j among X1, . . . , Xn are not greater than y,

and exactly i among them are not greater than x)

=
m−1∑
j=k

j∑
i=k

(
n

i, j − i

)
F i(x)(F (y)− F (x))j−i(1− F (y))n−j

=
m−1∑
j=k

j∑
i=k

Bi,j,n(F (x), F (y))

= F̃U
k,m:n(F (x), F (y)), (1.3.4)

where

Bi,j,n(u, v) =

(
n

i, j − i

)
ui(v − u)j−i(1− v)n−j, 0 < u ≤ v < 1,

for 0 ≤ i ≤ j ≤ n can be interpreted as is the probability that exactly i and j random
variables among n i.i.d. standard uniform random variables are less than u and v, respectively.
Similarly, we write

FX
m,n,k(x, y) = FX

m,k(x)− F̃X
m,n,k(x, y),

with

F̃X
m,n,k(x, y) = [1− F (y)]k

n−m−1∑
i=0

i∑
j=0

(−1)j
[
− k ln

(
1− F (x)

)]m+j[− k ln
(
1− F (y)

)]i−j
(m− 1)!j!(i− j)!(m+ j)

(cf. (1.2.6)). Note further that FX
k,m:n(x, y) = FU

k,m:n(F (x), F (y)) = 0 iff either F (x) = 0 or
F (y) = 0. Also, FX

k,m:n(x, y) = FX
k:n(x) and FX

k,m:n(x, y) = FX
m:n(y) under conditions F (y) = 1

and F (x) = 1, respectively. Analogous relations hold for functions FU
m,n,k. Therefore we
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finally obtain

Cov(Xk:n, Xm:n) =

∫∫
0<F (x)≤F (y)<1

[
FU
k:n

(
F (x)

)
− F̃U

k,m:n

(
F (x), F (y)

)
− FU

k:n

(
F (x)

)
FU
m:n

(
F (y)

)
+ FU

m:n

(
F (x)

)
− FU

m:n

(
F (x)

)
FU
k:n

(
F (y)

)]
dxdy

=

∫∫
0<F (x)≤F (y)<1

{
FU
k:n

(
F (x)

)[
1− FU

m:n

(
F (y)

)]
+ FU

m:n

(
F (x)

)[
1− FU

k:n

(
F (y)

)]
− F̃U

k,m:n

(
F (x), F (y)

)}
dxdy

=

∫∫
0<F (x)≤F (y)<1

{[
n∑
i=k

Bi,n

(
F (x)

)] [m−1∑
i=0

Bi,n

(
F (y)

)]

+

[
n∑

i=m

Bi,n

(
F (x)

)] [k−1∑
i=0

Bi,n

(
F (y)

)]
−

m−1∑
j=k

j∑
i=k

Bi,j,n

(
F (x), F (y)

)}
dxdy (1.3.5)

and

Cov(Rm,k, Rn,k) =

∫∫
0<F (x)≤F (y)<1

{
FU
m,k

(
F (x)

)[
1− FU

n,k

(
F (y)

)]
+ FU

n,k

(
F (x)

)[
1− FU

m,k

(
F (y)

)]
− F̃U

m,n,k

(
F (x), F (y)

)}
dxdy

=

∫∫
0<F (x)≤F (y)<1

{[
1− [1− F (x)]k

m−1∑
i=0

[
− k ln

(
1− F (x)

)]i
i!

]

× [1− F (y)]k
n−1∑
i=0

[
− k ln

(
1− F (y)

)]i
i!

+

[
1− [1− F (x)]k

n−1∑
i=0

[
− k ln

(
1− F (x)

)]i
i!

]

× [1− F (y)]k
m−1∑
i=0

[
− k ln

(
1− F (y)

)]i
i!

− [1− F (y)]k
n−m−1∑
i=0

i∑
j=0

(−1)j

×
[
− k ln

(
1− F (x)

)]m+j[− k ln
(
1− F (y)

)]i−j
(m− 1)!j!(i− j)!(m+ j)

}
dxdy. (1.3.6)

9



1.4 Variation diminishing property

Variation diminishing property (VDP, for short) of a (finite or infinite) sequence of functions
defined on a common interval domain asserts that arbitrary non-zero linear combination of the
functions has not more sign changes than the respective sequence of combination coefficients.
The property is one of crucial tools of our further analysis. The most popular VDP is famous
Descartes’s Rule of Signs, concerning power functions defined on positive half-axis.

Theorem 1 (see, e.g., Karlin and Studden, 1966, Corollary 1.4.4). Let p(x) = a0x
b0 +a1x

b1 +
· · ·+anx

bn be a function with nonzero real coefficients a0, . . . , an and real exponents b0, . . . , bn
satisfying b0 > b1 > . . . > bn. Then p cannot have more positive roots (even counted with
multiplicity) than the number of sign changes in the sequence a0, . . . , an.

The theorem was stated without proof by Descartes in 1637 in the case when b1, . . . , bn
were positive integers (see Descartes, 1954). A rigorous proof was delivered by Segner (1728).
Here we present the general version with a short proof of Komornik (2006), affixed here for
completeness.

Proof. Denote by z(p) the number of positive roots of p and by v(p) the number of sign
changes in the sequence a0, . . . , an. We prove by induction on v(p) that z(p) ≤ v(p). The
case v(p) = 0 is obvious, since then all terms of p(x) have the same sign for all x > 0, hence
z(p) = 0.

If v(p) > 0, then we choose an index i for which aiai+1 < 0. Since dividing p(x) by some
power of x changes neither v(p) nor z(p), we may assume that bi > 0 and bi+1 < 0. Let

p′(x) =
d

dx
p(x) = a′0x

b0−1 + a′1x
b1−1 + · · ·+ a′nx

bn−1.

Then sgn(a′j) = sgn(aj) for all j ∈ {1, . . . , i} and sgn(a′j) = −sgn(aj) for all j ∈ {i+1, . . . , n}.
Thus v(p′) = v(p)− 1.

Now we show that z(p′) ≥ z(p) − 1. Let x1 < . . . < xk be all positive roots of p(x)
with respective multiplicities m1, . . . ,mk. Then these roots are also roots of p′(x) with
multiplicities m1 − 1, . . . ,mk − 1. Moreover by Rolle’s theorem, each of the k − 1 open
intervals (xi, xi+1) contains at least one root of p′(x). Therefore

z(p′) ≥ (m1 − 1) + · · ·+ (mk − 1) + k − 1 = m1 + · · ·+mk − 1 = z(p)− 1.

By inductive assumption we have z(p) ≤ z(p′) + 1 ≤ v(p′) + 1 = v(p).

It can be easily noted that the first and last sign of the combination
∑n

i=0 aix
bi is identical

with the signs of the first and last non-zero coefficient of the combination. The above theorem
immediately implies VDP of the Bernstein polynomials of a fixed degree in interval (0, 1).
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Lemma 1 (cf., e.g., Rychlik 2001, Lemma 14). The number of sign changes of a non-zero
linear combination of Bernstein polynomials

∑m
k=0 bkBk,m of degree m on the interval (0, 1)

does not exceed the number of the sign changes of the sequence (b0, . . . , bm). Moreover, the
signs of the combination at the right neighborhood of 0 and the left neighborhood of 1 coincide
with the signs of the first and last non-zero elements of the sequence, respectively.

The first statement was proved in Schoenberg (1959). In fact, it simply follows from the
representation

m∑
k=0

bkBk,m(u) =
m∑
k=0

bk

(
m

k

)
uk(1− u)m−k = (1− u)m

m∑
k=0

bk

(
m

k

)
xk,

where x = x(u) = u
1−u is a strictly increasing transformation of the unit interval onto R+.

The latter claim is trivial.
The following lemma can also be easily deduced from the Theorem 1. Here we take the

strictly increasing reversible function x = x(u) = − ln(1 − u) that transforms (0, 1) onto
(0,+∞). This implies that the VDP is inherited by the powers of functions u 7→ − ln(1−u),
0 < u < 1.

Lemma 2. The number of sign changes of the linear combination

n∑
i=1

ai[− ln(1− u)]αi , 0 < u < 1,

where
∑n

i=1 |ai| > 0, and −∞ < α1 < . . . < αn < +∞, does not exceed the number of sign
changes in the sequence (a1, . . . , an). Moreover, the signs of the function in the right vicinity
of 0 and the left vicinity of 1 are identical with the signs of the first and last elements of
(a1, . . . , an), respectively.

The extension the variation diminishing property to infinite sequences is proposed by
Jasiński (2016, Proposition 2.1).

Lemma 3. Consider a sequence of functions (ϕi(x))∞i=1 defined on an interval (a, b) ⊂ R. If
(ϕi(x))ni=1 have the variation diminishing property for all n = 1, 2, . . ., and sequence (ai)

∞
i=1,

has k <∞ sign changes, and

g(x) =
∞∑
i=1

aiϕi(x), a < x < b,

is well defined, then g(x) has at most k sign changes.

11



This is proved by contradiction. If g has more than k sign changes, we choose k + 1
arguments a < x1 < . . . < xk+1 < b such that g(xi)g(xi+1) < 0, i = 1, . . . , k. If follows that
the same relations are preserved by finite sums

∑n
i=1 aiϕi for sufficiently large n, and this

contradicts VDP of
∑n

i=1 aiϕi.
The above lemma together with Theorem 1 imply the following.

Lemma 4. Suppose that function h : R+ 7→ R has an infinite Taylor expansion

f(x) =
∞∑
i=0

ai
xi

i!
, x > 0,

where sequence (ai)
∞
i=0 changes the sign finitely many times. Then the number of sign changes

of f in R+ does not exceed the number of sign changes of (ai)
∞
i=0. Moreover, the first sign of

f coincides with the sign of the first non-zero element of (ai)
∞
i=0, whereas last one is identical

with the ultimate sign of the sequence.
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Chapter 2

Bounds on the expectations of
L-statistics

Suppose that X1, . . . , Xn are non-degenerate i.i.d. random variables with a finite mean µ =
EX1. The purpose of this chapter is to present sharp lower and upper bounds on the expecta-
tions of properly centered L-statistics E

∑n
i=1 ci(Xi:n − µ), with arbitrary c1, . . . , cn ∈ R and

their special cases, expressed in terms of the Gini mean difference scale units ∆ = E|X1−X2|.
Centering is necessary in order to get non-trivial evaluations.

There is a vast literature devoted to inequalities for moments of order statistics, their
functions and generalizations in various sampling models. The first result in the subject
was due to Plackett (1947) who precisely estimated the expected sample range in the stan-
dard deviation units. Gumbel (1954) and Hartley and David (1954) independently provided
analogous upper bounds for the sample maxima. Moriguti (1953) proposed a new evaluation
technique based on the notion greatest convex minorant that is useful in getting sharp bounds
for arbitrary L-statistics from general populations. In the paper, he presented algorithms for
numerical calculations of the bounds for single order statistics and their differences. Balakr-
ishnan (1993) developed the Moriguti method for analytic determination of bounds for several
extreme order statistics. Arnold (1985) calculated tight upper bounds on the difference of
expected sample maximum and population mean in scale units generated by central absolute
population moments of various orders. Rychlik (1998) combined the methods of Moriguti
(1953) and Arnold (1985) for presenting a method of calculating analogous inequalities for
arbitrary L-statistics.

More precise bounds were derived for restricted families of parent distributions. Moriguti
(1951) presented mean-standard deviation bounds for the sample maxima from symmetric
populations, and extended the result to arbitrary order statistics in Moriguti (1953). Bounds
for the maxima of symmetrically distributed populations in various scale units can be found
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in Arnold (1985), and similar results for arbitrary L-statistics are due to Rychlik (1998).
Gajek and Rychlik (1998) proposed a new method of determining sharp bounds, based on
the notion of projections, and used it for evaluating order statistics from symmetric unimodal
distributions. Danielak (2003) applied the idea for obtaining analogous bounds in the families
of distributions with decreasing densities and decreasing failure rates, whereas Goroncy and
Rychlik (2015, 2016) solved a similar problem for the increasing density and increasing failure
rate families, respectively. The projection method makes it possible to determine sharp
positive upper bounds (and negative lower ones). Lower non-negative and upper non-positive
bounds for arbitrary L-statistics from general populations expressed in various scale units
based on central absolute moments were presented by Goroncy (2009). Rychlik (2009 a,b,c)
derived similar evaluations for order statistics with small ranks coming from restricted classes
of distributions. We finally mention evaluations of expected order statistics from the popular
i.i.d. model of drawing with replacement from finite populations, due to Rychlik (2004). The
result was extended by López-Blázquez and Rychlik (2008) to the case of arbitrary parent
distributions on discrete populations of a fixed size.

2.1 General L-statistics

Before we formulate results, we introduce some auxiliary notions. Given c = (c1, . . . , cn) ∈ Rn

with the arithmetic mean c̄ = 1
n

∑n
i=1 ci, we define vector a = a(c) = (a0, . . . , an−2) ∈ Rn−1

as follows

ai = ai(c) =
n(n− 1)

2(i+ 1)(n− i− 1)

i+1∑
k=1

(c̄− ck), i = 0, . . . , n− 2. (2.1.1)

Furthermore, we put

Ξc(u) =
n−2∑
i=0

aiBi,n−2(u), 0 ≤ u ≤ 1, (2.1.2)

where Bk,m are the Bernstein polynomials of degree m. Obviously, Ξc is a polynomial of
degree n− 2. Now we are in a position to state the main statement of this Chapter.

Theorem 2. Assume that X1, . . . , Xn are non-degenerate i.i.d. random variables with a finite
mean µ = EX1. Then, under the above notation, we have

min
0≤u≤1

Ξc(u) ≤ E
∑n

i=1 ci(Xi:n − µ)

∆
≤ max

0≤u≤1
Ξc(u).

If 0 < u1 < . . . < ur < 1 are all the inner points of the unit interval [0, 1], being the
arguments of the maximum (minimum), then the upper (lower) bound is attained iff the
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parent distribution function has the form

F (x) =



0, x < x0,
u1, x0 ≤ x < x1,
...
ur, xr−1 ≤ x < xr,
1, x ≥ xr,

(2.1.3)

for arbitrary x0 ≤ . . . ≤ xr > x0.
If the maximum (minimum) amounts to Ξc(0), then the upper (lower) bound is attained

in the limit by any two-point distributions such that the probabilities of the smaller point tend
to 0. Similarly, if the maximum (minimum) amounts to Ξc(1), the upper (lower) bound is
attained in the limit by any two-point distributions such that the probabilities of the smaller
point tend to 1.

According to (2.1.3), any distribution function attaining the upper bound is discrete, and
the set of its values that differ from 0 and 1 is a nonempty subset of {u1, . . . , ur}. The number
of jumps is greater by 1 than the cardinality of the subset. A polynomial of degree n − 2
may have bn

2
c − 1 local maxima at most. It is theoretically possible, but practically very

unlikely that all the maxima belong to (0, 1) and provide identical values of the polynomial.
For majority of L-statistics, especially these commonly used in statistical analysis, respective
functions Ξc have either one or (quite rarely) two maxima in (0, 1). It also happens that
the maximum is attained at either of the border points of the unit interval. Similar remarks
concern the minima of Ξc for various c.

Proof. We first get rid of µ in the representation of the expectation of centered L-statistics

E
n∑
i=1

ci(Xi:n − µ) = E
n∑
i=1

ci

(
Xi:n −

1

n

n∑
k=1

Xk:n

)

= E

(
n∑
i=1

ciXi:n −
1

n

n∑
i=1

ci

n∑
k=1

Xk:n

)
= E

n∑
i=1

(ci − c̄)Xi:n.

Since the new coefficients c̃i = ci− c̄, i = 1, . . . , n, sum up to 0, we can represent the modified
L-statistic

∑n
i=1 c̃iXi:n as a linear combination of spacings

n∑
i=1

c̃iXi:n =
n−1∑
i=1

bi(Xi+1:n −Xi:n),
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where

bi = −
i∑

k=1

c̃k =
i∑

k=1

(c̄− ck), i = 1, . . . , n− 1.

Now we use integral representations of the expected spacings

E(Xi+1:n −Xi:n) =

∫ ∞
−∞

Bi,n(F (x)) dx, i = 1, . . . , n− 1,

due to Pearson (1902) (see also Jones and Balakrishnan, 2002, formula (3.1)). It is also useful
in representing the Gini mean difference

∆ = E|X1 −X2| = E(X2:2 −X1:2) =

∫ ∞
−∞

B1,2(F (x)) dx.

We also have

E
n∑
i=1

ci(Xi:n − µ) = E
n−1∑
i=1

[
i∑

k=1

(c̄− ck)

]
(Xi+1:n −Xi:n)

=

∫ ∞
−∞

n−1∑
i=1

[
i∑

k=1

(c̄− ck)

]
Bi,n(F (x)) dx

=

∫ ∞
−∞

n−1∑
i=1

[
i∑

k=1

(c̄− ck)

]
n(n− 1)

2i(n− i)
Bi−1,n−2(F (x))B1,2(F (x)) dx

=

∫ ∞
−∞

n−2∑
i=0

n(n− 1)

2(i+ 1)(n− i− 1)

[
i+1∑
k=1

(c̄− ck)

]
Bi,n−2(F (x))B1,2(F (x)) dx

=

∫ ∞
−∞

Ξc(F (x))B1,2(F (x)) dx.

For getting the upper bound we write

E
n∑
i=1

ci(Xi:n − µ) ≤ sup
−∞<x<∞

Ξc(F (x))

∫ ∞
−∞

B1,2(F (x)) dx ≤ max
0≤u=F (x)≤1

Ξc(u) ∆,

as desired.
We get the equality in the latter inequality if we do not exclude any 0 ≤ u ≤ 1 from the

possible values of the parent distribution function F . We also have the equality in the former
one iff for almost all x ∈ R we have either Ξc(F (x)) = max0≤u≤1 Ξc(u) or B1,2(F (x)) = 0.
The latter is equivalent to either F (x) = 0 or F (x) = 1. The only possibility for attaining the
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bound is that the set of values of F (x) is contained in {u1, . . . , ur} ∪ {0, 1}. By assumption,
{F (x) : x ∈ R} ∩ {u1, . . . , ur} 6= ∅.

Suppose now that Ξc(0) > Ξc(u), 0 < u < 1, and consider the family of parent distribution
functions

Fu(x) =


0, x < x0,
u, x0 ≤ x < x1,
1, x ≥ x1,

0 < u < 1,

for some arbitrary x0 < x1. Then

Eu
n∑
i=1

ci(Xi:n − µ) = Ξc(u) ∆u.

Letting u ↓ 0, by continuity of Ξc we obtain

lim
u↓0

Eu
∑n

i=1 ci(Xi:n − µ)

∆u

= Ξc(0) = max
0≤u≤1

Ξc(u).

Similarly, in the case Ξc(1) > Ξc(u), 0 < u < 1, yields

lim
u↑1

Eu
∑n

i=1 ci(Xi:n − µ)

∆u

= Ξc(1) = max
0≤u≤1

Ξc(u).

The proofs for the lower bound as well as for its attainability are analogous.

If n = 2, we trivially obtain

E[c1(X1:2 − µ) + c2(X2:2 − µ)] =
c2 − c1

2
E(X2:2 −X1:2) =

c2 − c1

2
∆.

From now on, we exclude this case from further analysis. When n ≥ 3, in order to determine
extreme values of Ξc(u), 0 ≤ u ≤ 1, we need to analyze behavior of the derivative

Ξ′c(u) =
n−3∑
i=0

αiBi,n−3(u), (2.1.4)

where

αi = αi(c) = (n− 2)(ai+1 − ai) =
n(n− 1)(n− 2)

2

×

[ ∑i+2
k=1(c̄− ck)

(i+ 2)(n− i− 2)
−

∑i+1
k=1(c̄− ck)

(i+ 1)(n− i− 1)

]
, i = 0, . . . , n− 3. (2.1.5)

The following three remarks are useful in calculating bounds for specific L-statistics.
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Remark 1. We have Ξc(u) = −Ξc′(1 − u), 0 ≤ u ≤ 1, for some a = a(c) = (a0, . . . , an−2)
and a′ = a(c′) = (a′0, . . . , a

′
n−2) iff ai = −a′n−2−i, i = 0, . . . , n − 2, i.e. when

∑n
k=i+2 ck =∑n−i−1

k=1 c′i, i = 0, . . . , n − 2, or just simply c′i = cn+1−i, i = 1, . . . , n. The condition implies
that the upper (lower) evaluation for

∑n
i=1 ciXi:n is identical with the negative of the lower

(upper, respectively) evaluation for
∑n

i=1 cn+1−iXi:n. Examples of such pairs are the single
jth smallest and greatest order statistics. In consequence, for every L-statistics with ci =
cn+1−i, i = 1, . . . , n, the lower bound is the negative of the upper one. It holds for the linear
combinations of quasi-midranges

∑bn/2c
i=1 ci(Xi:n +Xn+1−i:n) (+cn+1

2
Xn+1

2
:n if n is odd).

Remark 2. We have Ξc(u) = Ξc(1− u), 0 ≤ u ≤ 1, iff ai = an−2−i, i = 0, . . . , n− 2, which
is consecutively equivalent to 1

n−2−2i

∑n−1−i
k=i+2 ck = c̄, i = 0, . . . , bn−3

2
c, and 1

2
(ci + cn+1−i) = c̄

for i = 1, . . . , n. This is satisfied by linear combinations of quasi-ranges and the sample
mean

∑bn/2c
i=1 di(Xn+1−i:n − Xi:n) + d

∑n
i=1 Xi:n. Under the condition, the set of maximum

(minimum) points of Ξa(u), 0 ≤ u ≤ 1, is symmetric about 1
2
. In particular, Ξc(u) has an

extreme at u = 1
2
.

Remark 3. Notice that the vector transformations a : Rn 7→ Rn−1 and α : Rn 7→ Rn−2

described by formulae (2.1.1) and (2.1.5), respectively, are linear. In consequence, func-
tions (2.1.2) and (2.1.4) are linear operators acting on vectors of coefficients c ∈ Rn. The
observation will be useful in our further calculations.

2.2 Single order statistics

Obviously, Xr:n is an L-statistic with the coefficient vector c(r) such that ci(r) = δir. Simple
calculations show that

ai(c(r)) =

{
n−1

2(n−i−1)
, if i ≤ r − 2,

− n−1
2(i+1)

, if i ≥ r − 1.

It follows that the respective polynomials Ξr:n(u) =
∑n−2

i=0 ai(c(r))Bi,n−2(u) have particular
forms:

Ξ1:n(u) = −
n−2∑
i=0

n− 1

2(i+ 1)
Bi,n−2(u), (2.2.1)

Ξ2:n(u) =
1

2
B0,n−2(u)−

n−2∑
i=1

n− 1

2(i+ 1)
Bi,n−2(u), (2.2.2)
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Ξr:n(u) =
r−2∑
i=0

n− 1

2(n− i− 1)
Bi,n−2(u)

−
n−2∑
i=r−1

n− 1

2(i+ 1)
Bi,n−2(u), 3 ≤ r ≤ n− 2, (2.2.3)

Ξn−1:n(u) =
n−3∑
i=0

n− 1

2(n− i− 1)
Bi,n−2(u)− 1

2
Bn−2,n−2(u), (2.2.4)

Ξn:n(u) =
n−2∑
i=0

n− 1

2(n− i− 1)
Bi,n−2(u). (2.2.5)

The corresponding derivatives are

Ξ′1:n(u) =
n−3∑
i=0

(n− 1)(n− 2)

2(i+ 1)(i+ 2)
Bi,n−3(u), (2.2.6)

Ξ′2:n(u) = −(n+ 1)(n− 2)

4
B0,n−3(u) +

n−3∑
i=1

(n− 1)(n− 2)

2(i+ 1)(i+ 2)
Bi,n−3(u), (2.2.7)

Ξ′r:n(u) =
r−3∑
i=0

(n− 1)(n− 2)

2(n− i− 2)(n− i− 1)
Bi,n−3(u)− (n2 − 1)(n− 2)

2r(n+ 1− r)

× Br−2,n−3(u) +
n−3∑
i=r−1

(n− 1)(n− 2)

2(i+ 1)(i+ 2)
Bi,n−3(u), 3 ≤ r ≤ n− 2, (2.2.8)

Ξ′n−1:n(u) =
n−4∑
i=0

(n− 1)(n− 2)

2(n−i−2)(n−i−1)
Bi,n−3(u)− (n+1)(n−2)

4
Bn−3,n−3(u), (2.2.9)

Ξ′n:n(u) =
n−3∑
i=0

(n− 1)(n− 2)

2(n− i− 2)(n− i− 1)
Bi,n−3(u). (2.2.10)

Proposition 1. (i) For the extreme order statistics, we have

−n− 1

2
≤ E

X1:n − µ
∆

≤ −1

2
,

1

2
≤ E

Xn:n − µ
∆

≤ n− 1

2
.

The lower and upper bounds in the above relations are attained in the limit by the two-point
distributions such that the probabilities of the smaller points tend to 0 and 1, respectively.
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(ii) The derivatives (2.2.7) and (2.2.9) have unique zeros v1(2) and u1(n − 1) = 1 − v1(2),
respectively. Moreover,

Ξ2:n(v1(2)) ≤ E
X2:n − µ

∆
≤ 1

2
, (2.2.11)

−1

2
≤ E

Xn−1:n − µ
∆

≤ Ξ2:n(u1(n− 1)). (2.2.12)

The lower bound in (2.2.11) and the upper bound in (2.2.12) are attained by the two-point
distributions such that the probability of the smaller points are v1(2) and u1(n − 1), respec-
tively. The upper bound in (2.2.11) and the lower one in (2.2.12) are attained in the limit
by the two-point distributions such that the probabilities of the smaller point tend to 0 and 1,
respectively.
(iii) For 3 ≤ r ≤ n − 2, the derivative (2.2.8) has exactly two zeros u1(r) < v1(r) in (0, 1).
Moreover,

Ξr:n(v1(r)) ≤ E
Xr:n − µ

∆
≤ Ξr:n(u1(r)),

and the lower and upper bounds are attained by the two-point distributions such that the
probabilities of the smaller points amount to v1(r) and u1(r), respectively.

By Remark 1, we have u1(n+ 1− r) = 1− v1(r), v1(n+ 1− r) = 1− u1(r),
and Ξn+1−r:n(u1(n+ 1− r)) = −Ξr:n(v1(r)), Ξn+1−r:n(v1(n+ 1− r)) = −Ξr:n(u1(r)).

Proof. Due to Theorem 2, it suffices to determine the arguments and corresponding values
of particular functions (2.2.1)–(2.2.5) which provide their global extremes over the interval
[0, 1]. By Lemma 1, functions (2.2.6) and (2.2.10) are positive in (0, 1). Hence (2.2.1) and
(2.2.5) are increasing in [0, 1]. Their extreme values are

Ξ1:n(0) = a0(c(1)) = −n− 1

2
,

Ξ1:n(1) = an−2(c(1)) = −1

2
,

Ξn:n(0) = a0(c(n)) =
1

2
,

Ξn:n(1) = an−2(c(n)) =
n− 1

2
.

Observe that the bounds for the sample maxima could be also deduced from ones for the
sample minima and vice versa with use of Remark 1.

By (2.2.7) and Lemma 1, function (2.2.2) is first decreasing and then increasing. Since
Ξ2:n(0) = a0(c(2)) = 1

2
, and Ξ2:n(1) = an−2(c(2)) = −1

2
, we immediately conclude that the
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global maximum and minimum are Ξ2:n(0) = 1
2

and Ξ2:n(v1(2)) < −1
2
, respectively, where

v1(2) is the unique zero of (2.2.7) in (0, 1). The bounds for the case r = n− 1 are derived in
much the same way.

For 3 ≤ r ≤ n − 2, Lemma 1 and (2.2.8) assert that (2.2.3) is either consecutively
increasing, decreasing and eventually increasing in (0, 1), or simply increasing in the whole
interval. Relations Ξr:n(0) = a0(c(r)) = 1

2
and Ξr:n(1) = an−2(c(r)) = −1

2
contradict the

latter possibility. Therefore (2.2.8) has two zeros in (0, 1). The first one u1(r) provides the
global maximum of (2.2.3), and the other v1(r) gives the minimum. This ends the proof.

Table 2.1 presents numerical values of upper bounds for the single order statistics Xr:n,
3 ≤ r < n = 12. Every cell contains two numbers: the bound value for respective r and
n (printed in bold), and the probability of the smaller point of the two-point distribution
which attains the bound (printed in the standard type). We adhere to the above conventions
presenting numerical evaluations later on. We have not included cases r = 1, r = 2 and r = n,
because then the bounds have simple forms and do not have to be determined numerically.
As one can expect, the bound values increase in the consecutive columns, and decrease in
the rows. The column increase accelerates, and the row decrease slows down. Analogous
tendencies reveal the probability values. The conclusions would not change if we included
case r = 2 into the analysis. The bound values amount to 0.5 then, and are attained in the
limit as the probability of the smaller point tends to 0. Using the Table, we can deduce the
lower bounds as well. The bound for the rth smallest order statistic Xr:n is identical with
the negative of the upper one for the rth greatest order statistic Xn+1−r:n. The attainability
parameter is obtained by subtracting the respective table value for Xn+1−r:n for one.

2.3 Differences of order statistics

We consider Xs:n − Xr:n for 1 ≤ r < s ≤ n. Here the vector of coefficients is c(r, s) =
c(s)− c(r) with c̄ = c̄(r, s) = 0. We specify the elements of (2.1.1) as follows

ai(c(r, s)) = ai(c(s))− ai(c(r))

=


0, i = 0, . . . , r − 2,

n(n−1)
2(i+1)(n−i−1)

, i = r − 1, . . . , s− 2,

0, i = s− 1, . . . , n− 2.

Note that the first and last zeros vanish if r = 1 and s = n, respectively.
Put

Ξr,s:n(u) = Ξc(r,s)(u), 1 ≤ r < s ≤ n, 0 < u < 1. (2.3.1)
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Furthermore

αi(c(r, s)) = αi(c(s))− αi(c(r))

=


0, i = 0, . . . , r − 3,
(n− 2)ai+1(c(r, s)), i = r − 2,
(n− 2)[ai+1(c(r, s))− ai(c(r, s))], i = r − 1, . . . , s− 3,
−(n− 2)ai(c(r, s)), i = s− 2,
0, i = s− 1, . . . , n− 3.

(2.3.2)

The first and last zeros disappear when r ≤ 2 and s ≥ n − 1, respectively. The second
and fourth rows vanish for r = 1 and s = n, respectively. The third one does not appear
for the spacings, i.e. when s = r + 1. We also check that under condition r − 1 ≤ i ≤
s − 3 yields ai+1(c(r, s)) < (=, >)ai(c(r, s)) iff i < (=, >)n−3

2
, respectively. This implies

that all the elements of the third row are non-positive and non-negative iff s ≤ n+3
2

and
r ≥ n−1

2
, respectively. They are first negative and ultimately positive when r < n−1

2
and

s > n+3
2

. Presenting below the bounds on the order statistics differences, we consider two
cases separately. In Proposition 2, we analyze the possibilities that the difference contains
at least one of the sample extremes. The remaining ones 2 ≤ r < s ≤ n − 1 are treated in
Proposition 3.

Proposition 2. (i) For the sample range we have

2− 22−n ≤ E
Xn:n −X1:n

∆
≤ n

2
.

The lower bound is attained by the symmetric two-point distributions. The upper one is
attained in the limit by the two-point distributions such that the probability of one point
decreases to 0.
(ii) If either r = 1 < s < n or 1 < r < s = n, then

0 ≤ E
Xs:n −Xr:n

∆
≤ n

2
.

In the former (latter) case the lower and upper bounds are attained in the limit by the two-
point distributions such that the probabilities of the smaller points tend to 1 and 0, respectively
(0 and 1, respectively).

Proof. (i) By the comments following (2.3.2), function Ξ1,n:n is first decreasing and then
increasing. Due to Remark 2, this is symmetric about 1

2
. Therefore

max
0≤u≤1

Ξ1,n:n(u) = Ξ1,n:n(0) = Ξ1,n:n(1) =
n

2
,

min
0≤u≤1

Ξ1,n:n(u) = Ξ1,n:n

(
1

2

)
= 2− 22−n,
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because

Ξ1,n:n(u) =

∑n−1
i=1 Bi,n(u)

B1,2(u)
=

1− (1− u)n − un

2u(1− u)
.

(ii) Suppose that r = 1 and s < n. If s ≤ n+3
2

, then function Ξ1,s:n is decreasing by the VDP
of its derivative. We have Ξ1,s:n(0) = n

2
which is the upper bound, and Ξ1,s:n(1) = 0 which is

the lower one. If s > n+3
2

, then Ξ1,s:n is decreasing in some neighborhoods of 0 and 1, but it
is also possible that it is increasing in some inner subinterval (v0, u0), say, of (0, 1). Then the
right end-point of the subinterval is a possible candidate for the global maximum. Suppose
that Ξ1,s:n(u0) > Ξ1,s:n(0) = n

2
. Therefore for some two-point distribution we have

Ξ1,s:n(u0) = E
Xs:n −X1:n

∆
≤ E

Xn:n −X1:n

∆
≤ n

2
,

which contradicts part (i) of the proposition. Moreover, point v0 cannot provide the global
minimum less than Ξ1,s:n(1) = 0 either, because

E
Xs:n −X1:n

∆
= Ξ1,s:n(v0) < Ξ1,s:n(1) = 0

is impossible for the expectation of non-negative random function Xs:n−X1:n. The proof for
1 < r < s = n is similar.

Proposition 3. Assume that 2 ≤ r < s ≤ n− 1.
(i) If either r ≥ n−1

2
or s ≤ n+3

2
, polynomial

Ξ′r,s:n(u) =
n−3∑
i=0

αi(c(r, s))Bi,n−3(u),

0 ≤ u ≤ 1,
(
see (2.3.2)

)
has a unique zero u1 = u1(r, s), say, in (0, 1). Also,

0 ≤ E
Xs:n −Xr:n

∆
≤ Ξr,s:n(u1).

(ii) If r < n−1
2

and s > n+3
2

, the polynomial has either one zero u1 ∈ (0, 1) or three zeros
u1 < v1 < u2, where u1 and u1, u2 are local maxima of Ξr,s:n in the former and latter cases,
respectively. In these cases we have

0 ≤ E
Xs:n −Xr:n

∆
≤ Ξr,s:n(u1),

0 ≤ E
Xs:n −Xr:n

∆
≤ max{Ξr,s:n(u1),Ξr,s:n(u2)},
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respectively.

The lower bounds in the inequalities of statements (i) and (ii) are attained in the limit
by the two-point distributions with the contributions of one point decreasing to 0. If the
maximum of Ξr,s:n(u) , 0 ≤ u ≤ 1, is attained at a single point ui, then the upper bound is
attained by the two-point distribution with the probability mass of the smaller point equal to
ui. If the global maximum is attained simultaneously at u1 and u2, then the bound is attained
by the parent distribution functions of the form

F (x) =


0, x < x0,
u1, x0 ≤ x < x1,
u2, x1 ≤ x < x2,
1, x ≥ x2,

for arbitrary x0 ≤ x1 ≤ x2 > x0.

Existence of two global maxima is possible, e.g. for the quasi-ranges with s = n+1−r. Then
Ξr,s:n(u) is symmetric about 1

2
. Moreover, for r located relatively close to 1 and far from n

2
,

the polynomial is bimodal. Clearly, the lower and upper bounds for Xr:n −Xs:n, r < s, are
the negatives of the upper and lower bounds for Xs:n −Xr:n.

Proof. Under the assumptions of point (i), the derivative Ξ′r,s:n(u) changes its sign once, from
+ to −. Therefore Ξr,s:n(u) is unimodal with the global maximum at the zero point of its
derivative. The lower bound coincides with

Ξr,s:n(0) = Ξr,s:n(1) = a0(c(r, s)) = an−2(c(r, s)) = 0.

In case (ii), Lemma 1 asserts that possible sequence of signs of Ξ′r,s:n are either + − +− or
+−. In the latter one, we can repeat the arguments of part (a). Otherwise, there are two
local maxima in (0, 1), and both are appropriate candidates for the global one. Notice that
the local minimum point v1 located between them cannot beat the interval endpoints in the
contest for the global minimum, because it is impossible that for any non-degenerate parent
distribution

E
Xs:n −Xr:n

∆
= Ξr,s:n(v1) < 0 = Ξr,s:n(0) = Ξr,s:n(1).

Remark 4. The upper bounds for the spacings (s = r + 1) and second spacings (s = r + 2)
can be calculated analytically, because then equations Ξ′r,s:n(u) = 0 can be simplified to linear
and quadratic equations, respectively. Note that the solutions to the cases r = 1 and s = n
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were precisely described in Proposition 2(b). Otherwise we write

E
Xr+1:n −Xr:n

∆
≤ Ξr,r+1:n

(
r − 1

n− 2

)
=

1

2

(
n

r

)
(r − 1)r−1(n− r − 1)n−r−1

(n− 2)n−2
,

E
Xr+2:n −Xr:n

∆
≤ Ξr,r+2:n(u1(r, r + 2)),

where

u1(r, r + 2) =

{
1
2
, if r = n−1

2
,

n−3+2r(r−1)−
√
a(r,n)

2(n−2)(2r−n−1)
, otherwise.

and a(r, n) = [n− 3 + 2r(r − 1)]2 − 4(r2 − 1)(n− 2)(2r − n− 1).

Remark 5. The conclusions of Proposition 3(b) can be specified more precisely for the quasi-
ranges, i.e. the differences of rth largest and smallest order statistics, 2 ≤ r ≤ n

2
. By Remark

2, function Ξr,n+1−r:n is symmetric about 1
2
, and Ξ′r,n+1−r:n is antisymmetric. Hence the latter

vanishes at 1
2
. If

Ξ′′r,n+1−r:n

(
1

2

)
=

n!

(n− 4)!2n−4

n−r∑
i=r

(
n

i

)
[(2i− n)2 − n+ 2] < 0, (2.3.3)

then Ξr,n+1−r:n has a local maximum at 1
2
. Since it is positive on (0, 1), and vanishes at 0

and 1, and has either one or three local extremes in (0, 1), the latter possibility is excluded,
and Ξr,n+1−r:n

(
1
2

)
is the global maximum. Summing up, the inequality in (2.3.3) implies

E
Xn+1−r:n −Xr:n

∆
≤ Ξr,n+1−r:n

(
1

2

)
= 21−n

n−r∑
i=r

(
n

i

)
, (2.3.4)

which can be also written as (2− 22−n)
∑r−1

i=0

(
n
i

)
. The equality is attained by the symmetric

two-point distributions.

If the inequality in (2.3.3) is reversed, then Ξr,n+1−r:n has a local minimum at 1
2

and two
global maxima attained at two arguments 0 < u1 <

1
2
< u2 = 1−u1 < 1 located symmetrically

about 1
2
. Accordingly,

E
Xn+1−r:n −Xr:n

∆
≤ Ξr,n+1−r:n (u1) = Ξr,n+1−r:n (u2) ,
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where u1 is the unique solution to

Ξ′r,n+1−r:n (u)

n(n− 1)(n− 2)
=

Br−2,n−3(u)−Bn−r−1,n−3(u)

r(n− r)

+
n−r−2∑
i=r−2

(2i+ 3− n)Bi,n−3(u)

(i+ 1)(i+ 2)(n− i− 1)(n− i− 2)
= 0

in
(
0, 1

2

)
. This bound is attained by the families of two-point distributions where the probability

of one point is u1, and symmetric three-point distributions where the probabilities of the
extreme points are equal to u1, and the middle point has probability u2 − u1 = 1− 2u1.

Note that for n−
√
n−2

2
≤ r ≤ n

2
we have (2i−n)2 < n−2 for all r ≤ i ≤ n− r, and (2.3.4)

follows. However, the assumption is very restrictive, and (2.3.4) holds true for much greater
range of 2 ≤ r ≤ n

2
.

Table 2.2 contains numerical approximations of upper bounds for the differences of orders
statistics Xs:n − Xr:n, 1 < r < s < n from the samples of size n = 12. Clearly, the bounds
increase with respect to s and decrease with respect to r. The attainability parameters
increase both in the columns and rows. The differences are hardly visible if r is small and s
is large. However, if we added the extra row for r = 1 and column for s = n = 12, we would
note a rapid rise of the bound value to n

2
= 6. These bounds are attained in the limit by the

two-valued distributions as the probability mass concentrates at one of them. It is seemingly
surprising that in the same way we obtain the zero lower bounds for all the cases except for
the sample range for which the strictly positive bound (here 2− 2−10 ≈ 1.99902) is attained
by the symmetric two-point distributions. On the other hand, the distributions provide the
upper bounds for the rth quasi-ranges X13−r:n−Xr:n r = 3, 4, 5, 6. The bound for the second
quasi-range X11:12 − X2:12 is the unique among Xs:12 − Xr:12, 1 ≤ r < s ≤ 12, which was
determined by maximizing a bimodal function (the other ones were unimodal). Since the
function is symmetric as well its maximum was attained at two arguments. This implies that
this bound is attained by three families of distributions: one symmetric three-point, and
two two-valued. We also observe that the bound values are symmetric about the opposite
diagonal of the Table, and the respective probability mass parameters sum up to 1. This is
an implication of the analytic identity Ξr,s:n(u) = Ξn+1−s,n+1−r:n(1− u).

2.4 Selected L-estimates

We start with studying trimmed means

Tr =
n∑
i=1

tiXi:n =
1

n+ 2− 2r

n+1−r∑
i=r

Xi:n, 2 ≤ r ≤ n

2
, (2.4.1)
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and Winsorized means

Wr =
n∑
i=1

wiXi:n =
r

n
Xr:n +

1

n

n−r∑
i=r+1

Xi:n +
r

n
Xn+1−r:n, 2 ≤ r ≤ n− 1

2
,

which are popular location estimates. In order to omit analyzing numerous special cases, we
decided to focus on the most popular central versions.

2.4.1 Trimmed means

In the case of trimmed means, we introduce polynomials

Ξt(r)(u) =
n−2∑
i=0

ai(t(r))Bi,n−2(u), (2.4.2)

Ξ′t(r)(u) =
n−3∑
i=0

αi(t(r))Bi,n−3(u), (2.4.3)

with coefficients
(
cf (2.1.1) and (2.1.5)

)
ai(t(r)) =


n−1

2(n−i−1)
, i = 0, . . . , r − 2,

(n−1)(r−1)
2(n+2−2r)

n−2i−2
(i+1)(n−i−1)

, i = r − 1, . . . , n− r − 1,

− n−1
2(i+1)

, i = n− r, . . . , n− 2,

and

αi(t(r)) = (n− 2)[ai+1(t(r))− ai(t(r))]

=



(n−1)(n−2)
2(n−i−1)(n−i−2)

, 0 ≤ i ≤ r − 3,
(n−1)(n−2)

2

[
(r−1)(n−2r)

(n+2−2r)r(n−r) −
1

n−r+1

]
, i = r − 2, n− r − 1,

− (n−1)(n−2)(r−1)
4(n+2−2r)

4(i−n−3
2

)2+n2−1

(i+1)(i+2)(n−i−1)(n−i−2)
, r − 1 ≤ i ≤ n− r − 2,

(n−1)(n−2)
2(i+1)(i+2)

, n− r ≤ i ≤ n− 3,

(2.4.4)

specified by (2.4.1).

Proposition 4. If r = 2, then

−1

2
≤ ETr − µ

∆
≤ 1

2
.

The lower and the upper bounds are attained in the limit by the two-point distributions such
that the probability of the smaller point tends to 1 and 0, respectively.
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If r ≥ 3, then (2.4.3) has exactly two zeros 0 < u1 = u1(r) < 1
2
< v1 = v1(r) = 1−u1 < 1,

mutually symmetric about 1
2
, and then

−Ξt(r)(u1) = Ξt(r)(v1) ≤ ETr − µ
∆

≤ Ξt(r)(u1).

The lower and the upper inequalities become equalities for the two-point distributions such
that the probabilities of the greater and smaller points, respectively, amount to u1.

It follows from the proof that for r ≥ 3 the upper bounds are greater than 1
2

and the
lower ones are less than −1

2
.

Proof. Due to Theorem 2, it suffices to find the global extremes of (2.4.2) over the interval
[0, 1]. To this end, we consider its derivative (2.4.3). By Lemma 1, analysis of signs in (2.4.4)
is helpful. For r = 2, the first and last rows do not appear. The second one

α0(t(2)) =
(n− 1)(n− 2)

2

[
n− 4

2(n− 2)2
− 1

n− 1

]
= −n

2 − 3n+ 4

4(n− 2)

is negative, because so is the discriminant of the quadratic numerator in the last fraction.
The elements of the third row are negative for n ≥ 5, and do not appear for n = 4. Therefore
α(t(2)) ∈ Rn−2

− , (2.4.3) is negative, and (2.4.2) is decreasing from Ξt(r)(0) = a0(t(r)) = 1
2

to
Ξt(r)(1) = an−2(t(r)) = −1

2
. It suffices for deducing the first statement of the Proposition.

If r ≥ 3, then the elements of the first and last rows in (2.4.4) are positive, and those of
the third one are negative for n ≥ 2r + 1. It may happen, that n = 2r, then the elements
of the second row in (2.4.4) are obviously negative. So we can conclude that the elements
of (2.4.4) are first positive, then negative and eventually positive. The VDP implies that
(2.4.2) is either increasing on the whole (0, 1) or first increasing, then decreasing and finally
increasing there. The first possibility is excluded by the relations

Ξt(r)(0) = a0(t(r)) =
1

2
,

Ξt(r)(1) = an−2(t(r)) = −1

2
.

So it increases from 1
2

at 0 to the global maximum Ξt(r)(u1) > 1
2
, then decreases to the

global minimum Ξt(r)(v1) < −1
2
, and ultimately increases to −1

2
at 1. Symmetry of coeffi-

cients ti(r) = tn+1−i(r), i = 1, . . . , n, implies Ξt(r)(u) = −Ξt(r)(1 − u), 0 ≤ u ≤ 1, and, in
consequence, u1 = 1− v1 with Ξt(r)(u1) = −Ξt(r)(v1). This ends the proof.
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2.4.2 Winsorized means

Evaluating bounds for the Winsorized means we study the following linear combinations of
Bernstein polynomials

Ξw(r)(u) =
n−2∑
i=0

ai(w(r))Bi,n−2(u), (2.4.5)

Ξ′w(r)(u) =
n−3∑
i=0

αi(w(r))Bi,n−3(u), (2.4.6)

with the coefficients

ai(w(r)) =


n−1

2(n−i−1)
, i = 0, . . . , r − 2,

0, i = r − 1, . . . , n− r − 1,
− n−1

2(i+1)
, i = n− r, . . . , n− 2,

and

αi(w(r)) = (n− 2)[ai+1(w(r))− ai(w(r))]

=


(n−1)(n−2)

2(n−i−1)(n−i−2)
, i = 0, . . . , r − 3,

− (n−1)(n−2)
2(n+1−r) , i = r − 2, n− r − 1,

0, i = r − 1, . . . , n− r − 2,
(n−1)(n−2)
2(i+1)(i+2)

, i = n− r, . . . , n− 3,

(2.4.7)

Proposition 5. If r = 2, then

−1

2
≤ EWr − µ

∆
≤ 1

2
,

and the lower and the upper bounds are attained in the limit by the two-point distributions
such that the probability mass of the smaller one tends to 1 and 0, respectively.

Otherwise (2.4.6) has exactly two zeros 0 < u1 <
1
2

and v1 = 1− u1, and

−Ξw(r)(u1) = Ξw(r)(v1) ≤ EWr − µ
∆

≤ Ξw(r)(u1) >
1

2
.

The equalities in the left- and right-hand side inequalities hold for the two-point distributions
such that the probability of the greater and smaller point, respectively, is equal to u1.
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Proof. If r = 2, we can omit the first and last rows of (2.4.7) in our analysis. Vector α(w(r))
has two identical negative values at the ends, and zeros in between. It follows that (2.4.6) is
negative and (2.4.5) is decreasing on (0, 1). Its extreme values are

Ξw(r)(0) = a0(w(r)) =
1

2
, (2.4.8)

Ξw(r)(1) = an−2(w(r)) = −1

2
. (2.4.9)

For r ≥ 3, the elements of sequence (2.4.7) are subsequently positive, negative, zero,
again negative, and finally positive. It follows that (2.4.5) is either always increasing or
subsequently increasing, decreasing, and increasing. Since (2.4.8) and (2.4.9) hold, the first
option is false. Therefore (2.4.5) first increases to the global maximum at u1, then decreases
to the global minimum at v1, and then increases to −1

2
at 1. Its symmetry causes that

v1 = 1− u1, and Ξw(r)(v1) = −Ξw(r)(u1).

2.4.3 Differences between trimmed and Winsorized means

Finally we evaluate the expected differences between the rth central trimmed and Winsorized
means Tr −Wr, 2 ≤ r ≤ n−1

2
in the Gini mean difference units. Here we use linearity of

operators described in Remark 3.

Corollary 1. For 2 ≤ r ≤ n−1
2

, polynomial Ξ′t(r) − Ξ′w(r) has two zeros 0 < u1 <
1
2

and

v1 = 1− u1, symmetric about 1
2

and such that

Ξt(r)(v1)− Ξw(r)(v1) ≤ E(Tr −Wr)

∆
≤ Ξt(r)(u1)− Ξw(r)(u1),

and Ξt(r)(v1) − Ξw(r)(v1) = Ξw(r)(u1) − Ξt(r)(u1). Moreover, the lower and upper bounds
become equalities for the two-point distributions such that u1 is the probability of the greater
and smaller points, respectively.

Proof. Referring to Remark 3, we easily determine the coefficients of Ξt(r) − Ξw(r) and its
derivative in the Bernstein bases:

ai(t(r))− ai(w(r)) =

{
0, i = 0, . . . , r − 2, n− r, . . . , n− 2,
(n−1)(r−1)
2(n+2−2r)

n−2i−2
(i+1)(n−i−1)

, i = r − 1, . . . , n− r − 1,

and

αi(t(r))− αi(w(r))

=


0, i = 0, . . . , r − 3, n− r, . . . , n− 3,
(n−1)(n−2)(r−1)

2(n+2−2r)
(n−2r)
r(n−r) , i = r − 2, n− r − 1,

− (n−1)(n−2)(r−1)
4(n+2−2r)

4(i−n−3
2

)2+n2−1

(i+1)(i+2)(n−i−1)(n−i−2)
, i = r − 1, . . . , n− r − 2.
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Table 2.3: Upper bounds on expectations of trimmed means ETr−µ
∆

, Winsorized means EWr−µ
∆

and their differences ETr−Wr

∆
for r = 2 . . . , 15 and sample size n = 30.

Tr Wr Tr −Wr

r bound u1 bound u1 bound u1

2 0.5 0 0.5 0 0.14073 0.06012
3 0.50084 0.00344 0.50032 0.00128 0.18472 0.11091
4 0.50682 0.02151 0.50358 0.01108 0.21072 0.15652
5 0.51701 0.04765 0.51011 0.02794 0.22783 0.19822
6 0.52995 0.07743 0.51918 0.04923 0.23850 0.23652
7 0.54495 0.10880 0.53038 0.07360 0.24315 0.27157
8 0.56162 0.14060 0.54355 0.10029 0.24116 0.30329
9 0.57969 0.17202 0.55866 0.12884 0.23110 0.33137

10 0.59887 0.20238 0.57578 0.15894 0.21082 0.35525
11 0.61881 0.23104 0.59506 0.19038 0.17795 0.37431
12 0.63897 0.25724 0.61671 0.22300 0.13967 0.38837
13 0.65839 0.27992 0.64095 0.25649 0.07768 0.39793
14 0.67536 0.29762 0.66694 0.28827 0.02766 0.40377
15 0.68733 0.30885

The latter consists of a series of zeros, a positive value, a series of negative ones, again
the positive one, and zeros at the end. The zeros do not appear for r = 2. Anyway, this
implies that function Ξt(r)−Ξw(r) is either increasing or increasing-decreasing-increasing. The
former is impossible, because Ξt(r)(0)−Ξw(r)(0) = a0(t(r))−a0(w(r)) = Ξt(r)(1)−Ξw(r)(1) =
an−2(t(r))−an−2(w(r)) = 0. Consequently, the function has the global maximum at the first
zero u1 of its derivative, and the global minimum at the latter one v1 = 1− u1, owing to its
symmetry. This completes the proof.

In Table 2.3 we numerically compare the upper bounds on expectations of trimmed and
Winsorized means and their differences for the samples of size n = 30. They are accompanied
by the parameters characterizing the two-point distributions attaining them. The lower
bounds are the negatives of the upper ones, and their attainability parameters are symmetric
with respect to 1

2
. We start with some intuitively clear observations. The bounds for the

trimmed and Winsorized means increase as so does truncation level r. This happens because
with increase of r these L-estimates more and more differ from the sample mean whose
expectation is µ. The bounds for the differences Tr −Wr first increase and then decrease.
For small r, statistics Tr and Wr do not differ much one from the other (and from the sample
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mean). Then the differences steadily increase till r = 7 ≈ n
4

for which both Tr and Wr are
constructed on the base of an approximately half of the sample. When r further increases, Tr
and Wr approach one the other, and finally we get T15 = W15 (this is the reason why we have
not filled four cells in the last row of Table 2.3). However, we also observe the following. The
upper bounds for the trimmed means are always greater than the other ones. The respective
probabilities asserting attainability lie between those for differences and Winsorized means.
These facts follow from our analytic considerations. The bounds are the maxima of certain
positive polynomials over the interval

[
0, 1

2

]
. The polynomials for Tr are the sums of those

for Wr and Tr −Wr. So the bounds for Tr are greater than each of the latter ones and less
than their sum. Mutual location of the characterizing parameters is also easily concluded
from our proofs. The polynomials we consider in the study of bounds for Wr and Tr −Wr

are combinations of extreme and central Bernstein polynomials, respectively. These relations
could not be simply deduced on the basis of statistical intuition only.

2.4.4 Mean absolute deviation from the median

Now we proceed to mean absolute deviation from the median

MAD(X) =
1

n

n∑
i=1

|Xi −med(X)|

which is a classic L-estimate of scale. Here

med(X) =

{
Xn+1

2
:n, if n is odd,

1
2

(
Xn

2
:n +Xn

2
+1:n

)
, if n is even,

is the sample median so that we can write

MAD(X) =

 − 1
n

∑n−1
2

i=1 Xi:n + 1
n

∑n
i=n+3

2
Xi:n, if n is odd,

− 1
n

∑n
2
i=1 Xi:n + 1

n

∑n
i=n

2
+1 Xi:n, if n is even.

We have the following.

Proposition 6. For n ≥ 3

1

2
≤ EMAD(X)

∆
≤ 1−Bbn

2
c,n−1

(
1

2

)
.

The lower bound is attained in the limit for the two-point distributions such that the probability
mass of one point decreases to zero. The upper one becomes equality for the symmetric two-
point distributions.
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The upper bound for each odd sample size n = 2m + 1 coincides with that for the
proceeding even size n = 2m. Using the Stirling approximation of the factorial sequence we

note that the upper bounds tend to 1 at the rate
√

2
πn

. Since the sample Gini mean difference

∆̂ =
1

n(n− 1)

∑
i 6=j

|Xi −Xj| =
2

n(n− 1)

n∑
i=1

(2i− n− 1)Xi:n

is an unbiased L-estimate of ∆, we can treat the result of Proposition 6 as a comparison of
expectations of MAD(X) and ∆̂. This shows that the former is always less. Moreover, the
upper evaluation of the ratio depends on the sample size n of MAD(X), and we can take
any size m (greater or less than n) for calculating ∆̂. The lower one depends neither on n
nor on m.

Proof. If n is odd, we immediately calculate

ai =

{
n−1

2(n−i−1)
, i = 0, . . . , n−3

2
,

n−1
2(i+1)

, i = n−1
2
, . . . , n− 2,

αi =


(n−1)(n−2)

2(n−i−1)(n−i−2)
, i = 0, . . . , n−5

2
,

0, i = n−3
2
,

− (n−1)(n−2)
2(i+1)(i+2)

, i = n−1
2
, . . . , n− 3.

By Lemma 1, Ξc(u) is first increasing and then decreasing in (0, 1). By Remark 2, it is
symmetric as well, and so

min
0≤u≤1

Ξc(u) = Ξc(0) = a0 = Ξc(1) = an−2 =
1

2
,

max
0≤u≤1

Ξc(u) = Ξc

(
1

2

)
=

n−3
2∑
i=0

n− 1

2(n−i− 1)
Bi,n−2

(
1

2

)
+

n−2∑
i=n−1

2

n− 1

2(i+ 1)
Bi,n−2

(
1

2

)

=

n−3
2∑
i=0

Bi,n−1

(
1

2

)
+

n−1∑
i=n+1

2

Bi,n−1

(
1

2

)
= 1−Bn−1

2
,n−1

(
1

2

)
.

For even n, the formulae are slightly modified

ai =

{
n−1

2(n−i−1)
, i = 0, . . . , n

2
− 1,

n−1
2(i+1)

, i = n
2
, . . . , n− 2,

αi =

{
(n−1)(n−2)

2(n−i−1)(n−i−2)
, i = 0, . . . , n

2
− 2,

− (n−1)(n−2)
2(i+1)(i+2)

, i = n
2
− 1, . . . , n− 3,
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Table 2.4: Upper bounds on expectations of MAD for various sample sizes n.
n 2, 3 4, 5 6, 7 8, 9 10, 11 50, 51 100, 101 200, 201

bound 0.5 0.625 0.6875 0.72656 0.75391 0.88772 0.92041 0.94365

but the arguments remain the same, and lead to the conclusions

min
0≤u≤1

Ξc(u) = Ξc(0) = a0 = Ξc(1) = an−2 =
1

2
,

max
0≤u≤1

Ξc(u) = Ξc

(
1

2

)
=

n
2
−1∑
i=0

n− 1

2(n− i− 1)
Bi,n−2

(
1

2

)
+

n−2∑
i=n

2

n− 1

2(i+ 1)
Bi,n−2

(
1

2

)

=

n
2
−1∑
i=0

Bi,n−1

(
1

2

)
+

n−1∑
i=n

2
+1

Bi,n−1

(
1

2

)
= 1−Bn

2
,n−1

(
1

2

)
.

We present several exemplary values of upper bounds for MAD for various sample sizes
in Table 2.4.
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Chapter 3

Bounds on the variances of L-statistics

We consider i.i.d. random variables X1, . . . , Xn with a positive and finite variance. Under
the assumptions, we determine upper bounds on the ratios Var (

∑n
i=1 ciXi:n) /Var X1 for

arbitrary coefficients c1, . . . , cn ∈ R of the combination. Then we present sufficient conditions
assuring sharpness of the bounds. Further we determine assumptions under which the lower
bounds on the variance ratios amount to zero. We also describe the families of two-point
distributions which attain the bounds, possibly in the limit. In the sequel, we recall results
of Papadatos (1995) who determined sharp upper and lower bounds on the variances of
single order statistics. Then we provide analogous results for spacings Si:n = Xi+1:n −Xi:n,
i = 1, . . . , n − 1. Finally, we determine tight upper bounds for variances of arbitrary linear
combinations of spacings based on three observations.

There are quite few research papers about bounds on variances of order statistics. In that
mentioned above, Papadatos (1995) determined sharp lower and upper bounds on variances
of single order statistics, expressed in terms of the single observation variance units. The
upper bound for the special case of sample median was earlier presented in Yang (1982), and
its tightness was proved by Lin and Huang (1989). Papadatos (1997) refined these results
for the families of symmetric parent distributions. More precise solution to the problem was
presented in Jasiński and Rychlik (2013). Much earlier, lower and upper bounds for the
variances of sample extremes were delivered by Moriguti (1951). By now, there were not
known respective evaluations for variances of combinations of two and more order statistics.
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3.1 General L-statistics

For arbitrary non-zero c = (c1, . . . , cn) ∈ Rn, we define

Φc(u, v) =

[
n−1∑
i=0

n

i+ 1

(
i+1∑
k=1

ck

)
Bi,n−1(u)

][
n−1∑
j=0

n

n− j

(
n∑

m=j+1

cm

)
Bj,n−1(v)

]

−
n−2∑
i=0

n−2∑
j=i

n(n− 1)

(i+ 1)(n− 1− j)

(
i+1∑
k=1

ck

)(
n∑

m=j+2

cm

)
Bi,j,n−2(u, v). (3.1.1)

Since

Bi,j,n(u, u) =

{
0, i < j,
Bi,n(u), i = j,

we have

Ψc(u) = Φc(u, u) =

[
n−1∑
i=0

n

i+ 1

(
i+1∑
k=1

ck

)
Bi,n−1(u)

][
n−1∑
j=0

n

n− j

(
n∑

m=j+1

cm

)
Bj,n−1(u)

]

−
n−2∑
i=0

n(n− 1)

(i+ 1)(n− 1− i)

(
i+1∑
k=1

ck

)(
n∑

m=i+2

cm

)
Bi,n−2(u). (3.1.2)

Theorem 3. Let X1, . . . , Xn be i.i.d. with a finite and positive variance. Then for arbitrarily
fixed non-zero c = (c1, . . . , cn) ∈ Rn, we have

Var(
∑n

i=1 ciXi:n)

Var X1

≤ sup
0<u≤v<1

Φc(u, v). (3.1.3)

If
sup

0<u≤v<1
Φc(u, v) = sup

0<u<1
Ψc(u), (3.1.4)

then bound (3.1.3) is sharp. Moreover, under notation

Fu(x) =


0, x < a,
u, a ≤ x < b,
1, x ≥ b,

(3.1.5)

the following yields.
(i) If sup0<u<1 Ψc(u) = Ψc(u0) for some 0 < u0 < 1, then the bound is attained when the
parent distribution function is Fu0.
(ii) If sup0<u<1 Ψc(u) = Ψc(0), then (3.1.3) becomes equality in the limit for the parent

38



distribution functions (3.1.5) with u↘ 0.
(iii) If sup0<u<1 Ψc(u) = Ψc(1), then bound (3.1.3) is attained in the limit for the parent
two-point distribution functions (3.1.5) with u↗ 1.

Proof. By (1.1.1), (1.3.3), (1.3.4) and (1.3.5), with F denoting the parent distribution func-
tion, we have

Var(
n∑
i=1

ciXi:n) =
n∑
k=1

c2
k Var Xk:n + 2

∑
k<m

ckcmCov(Xk:n, Xm:n)

= 2

∫∫
0<F (x)≤F (y)<1

{ n∑
k=1

c2
kF

U
k:n

(
F (x)

)[
1− FU

k:n

(
F (y)

)]
+

n−1∑
k=1

n∑
m=k+1

ckcm

[
FU
k:n

(
F (x)

)[
1− FU

m:n

(
F (y)

)]
+ FU

m:n

(
F (x)

)[
1− FU

k:n

(
F (y)

)]
− F̃U

k,m:n

(
F (x), F (y)

)]}
dxdy

= 2

∫∫
0<F (x)≤F (y)<1

{[
n∑
k=1

ckF
U
k:n

(
F (x)

)] [ n∑
m=1

cm[1− FU
m:n(F (y))]

]

−
n−1∑
k=1

n∑
m=k+1

ckcm

m−1∑
j=k

j∑
i=k

Bi,j,n

(
F (x), F (y)

)}
dxdy

= 2

∫∫
0<F (x)≤F (y)<1

{[
n∑
i=1

(
i∑

k=1

ck

)
Bi,n

(
F (x)

)]

×

[
n−1∑
j=0

(
n∑

m=j+1

cm

)
Bj,n

(
F (y)

)]

−
n−1∑
i=1

n−1∑
j=i

(
i∑

k=1

ck

)(
n∑

m=j+1

cm

)
Bi,j,n

(
F (x), F (y)

)}
dxdy

= 2

∫∫
0<F (x)≤F (y)<1

Φc

(
F (x), F (y)

)
F (x)[1− F (y)]dxdy

≤ max
0≤u≤v≤1

Φc(u, v)Var X1,

which completes the proof of inequality (3.1.3).
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The above calculations show that for the two-point distribution function (3.1.5), we get

Varu

(
n∑
i=1

ciXi:n

)
= Ψc(u)VaruX1, (3.1.6)

because u is the unique value of Fu(x) and Fu(y) except for 0 and 1. Accordingly, under
(3.1.4) and condition (i) of Theorem 3, the upper bound is attained if the baseline distribution
function is Fu0 . Attainability of the bound in cases (ii) and (iii) follows from (3.1.6) and
continuity of (3.1.2) on [0, 1].

Theorem 4. Under assumptions of Theorem 3, if c1cn = 0, then bound

Var(
∑n

i=1 ciXi:n)

Var X1

≥ 0

is sharp. If c1 = 0 (cn = 0, respectively), then the equality is attained under conditions of of
Theorem 3(ii) ((iii), respectively).

Proof. We first note that Ψc(0) = nc2
1 and Ψc(1) = nc2

n. Therefore, if c1 = 0, then under the
procedure described in Theorem 3(ii) we obtain

lim
u↘0

Var(
∑n

i=1 ciXi:n)

Var X1

= lim
u↘0

Ψc(u) = Ψc(0).

Similarly, we treat case cn = 0.

3.2 Single order statistics

Let c(k) = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn be the vector with only non-zero element equal to 1
located at position k ∈ {1, . . . , n}. Then obviously

∑n
i=1 ciXi:n = Xk:n, whereas function

defined in (3.1.2) has the form

Ψc(k)(u) =

[
n∑
i=k

(
n

i

)
ui−1(1− u)n−i

][
k−1∑
j=0

(
n

j

)
uj(1− u)n−j−1

]
, 0 ≤ u ≤ 1. (3.2.1)

Papadatos (1995) showed that for 1 < k < n yields

Var Xk:n

Var X1

≤ max
0≤u≤1

Ψc(k)(u) = Ψc(k)(u0), (3.2.2)

40



where u0 = u0(k, n) ∈ (0, 1) is the unique zero of the derivative of (3.2.1). In fact, he
determined more precisely location of u0 proving that u0 ∈ (ρ1, ρ2) ⊂ (0, 1), where ρ1 =
ρ1(k, n) and ρ2 = ρ2(k, n) are the only maxima of functions [1−FU

k:n(u)]/(1−u) and FU
k:n(u)/u,

respectively, in interval (0, 1). By Theorem 3(i), the equality in (3.2.2) holds for the two-
point distribution functions (3.1.5) with u = u0. For the case of extreme order statistics,
Papadatos (1995) noted that

Var X1:n

Var X1

≤ max
0≤u≤1

Ψc(1)(u) = Ψc(1)(0) = n,

Var Xn:n

Var X1

≤ max
0≤u≤1

Ψc(n)(u) = Ψc(n)(1) = n.

Conditions of the above bounds attainability are described in Theorem 3(ii) and (iii), respec-
tively.

Note also that for all n ∈ N we have

Ψc(k)(0) = 0, k = 2, . . . , n,

Ψc(k)(1) = 0, k = 1, . . . , n− 1.

Thus evaluation
Var Xk:n

Var X1

≥ 0

is tight for all k ∈ {1, . . . , n} and n ≥ 2. The equality is attained for k = 1 and k = n under
conditions of Theorem 3(iii) and (ii), respectively. For all other k, both procedures lead to
the trivial zero bound.

3.3 Spacings

Spacings Si:n = Xi+1:n−Xi:n play important roles in various problems of statistical inference
and other branches of applied probability. Comprehensive discussions of their properties
and applications are presented, e.g., in Pyke (1965, 1972) and David and Nagaraja (2003).
Various evaluations of the expectations of spacings were presented in the literature. The
first ones are due to Moriguti (1953) who derived sharp bounds on expected spacings in
the population standard deviation units. Raqab (2003) presented optimal upper bounds
on the expectations of spacings in more general scale units, generated by central absolute
populations moments of various orders p ≥ 1. Danielak (2004) extended these results to
arbitrary quasi ranges, i.e., differences of order statistics Xj:n − Xi:n, 1 ≤ i < j ≤ n.
Kozyra and Rychlik (2017a) obtained tight lower and upper bounds on the differences of
expected order statistics measured in the Gini mean difference units. More stringent standard
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deviation bounds in the restricted families of decreasing density and decreasing failure rate
distributions were determined by Danielak and Rychlik (2004). More general families of
distributions with decreasing density and failure rate on the average were studied in Danielak
and Rychlik (2003). Recently, Goroncy and Rychlik (2015,2016) presented analogous results
for the distributions with increasing density and increasing failure rate functions, respectively.
A first attempt of evaluating the expectations of spacings in finite populations was due to
López-Blázquez (2000). Rychlik (2004) determined sharp upper bounds on the expectations
of all quasi-ranges in the classic model of drawing with replacement. Similar results for the
drawing without replacement scheme can be found in Papadatos and Rychlik (2004). Lower
bounds for the spacings from the drawing with replacement model were presented by Goroncy
and Rychlik (2009). Analogous results for the without replacement drawing scheme can be
concluded from Goroncy and Rychlik (2008). All these bounds amount to zero except for

the case i = 1, n = 2, for which we have ES1:2 ≥ 2
[

N
(N−1)p+N−1

]1/p

(E|X1−EX1|p)1/p, where

p ≥ 1 and N denotes the population size.
This section is devoted to evaluations of variances of spacings. Put c(i, i + 1) = c(i +

1) − c(i) = (0, . . . , 0,−1, 1, 0, . . . , 0) for some 1 ≤ i ≤ n − 1 and n ≥ 2. The vector
has −1 and 1 at positions i and i + 1, respectively, and zeros elsewhere. Then clearly∑n

j=1 cj(i, i+ 1)Xj:n = Xi+1:n −Xi:n = Si:n, and function (3.1.1) can be written as

Φi:n(u, v) = Φc(i,i+1)(u, v) =

(
n

i

)
ui−1(1− v)n−i−1

[
1−

(
n

i

)
vi(1− u)n−i

]
(3.3.1)

Here and later on we replace subscript c(i, i+ 1) by i : n for convenience. We further obtain

Ψi:n(u) = Φi:n(u, u) =

(
n

i

)
ui−1(1− u)n−i−1

[
1−

(
n

i

)
ui(1− u)n−i

]
. (3.3.2)

Then we have
max

0≤u≤v≤1
Φi:n(u, v) = max

0≤u≤1
Ψi:n(u),

because for fixed u ∈ (0, 1) the function Φi:n(u, v), u ≤ v ≤ 1, is the product of two positive
and decreasing functions of v. In consequence, we derive a straightforward conclusion of
Theorems 3 and 4.

Proposition 7. For arbitrary fixed 1 ≤ i < n <∞, the bound

Var Si:n
Var X1

≤ max
0≤u≤1

Ψi:n(u) (3.3.3)

is sharp. If max0≤u≤1 Ψi:n(u) = Ψi:n(u0) for some u0 = u0(i, n) ∈ (0, 1), then the upper
bound in (3.3.3) is attained iff the parent distribution function is (3.1.5) with u = u0. If
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max0≤u≤1 Ψi:n(u) = Ψi:n(0) (Ψi:n(1), respectively), then this is attained in the limit by the
parent distribution functions (3.1.5) with u ↓ 0 (u ↑ 1, respectively).

For 1 ≤ i < n ≥ 3, the trivial bound

Var Si:n
Var X1

≥ 0

is sharp, and becomes equality in the limit for the parent distribution functions (3.1.5) with
u ↓ 0 when i ≥ 2 and u ↑ 1 when i ≤ n− 2.

Remark 6. Note that

Ψi:n(u) =

(
n

i

)
ui−1(1− u)n−i−1

n∑
j=0
j 6=i

Bj,n(u).

By Lemma 1, Ψi:n(u) > 0 for all n ≥ 2, 1 ≤ i ≤ n−1 and u ∈ (0, 1). Moreover, Ψi:n(u) = 0 if
either i ≥ 2 and u = 0 or i ≤ n− 2 and u = 1. This observation is intimately connected with
the tight zero lower bound of Proposition 7 . Also, relation Ψi:n(u) = Ψn−i:n(1− u) together
with (3.3.3) imply that the upper bounds for the variances of Si:n and Sn−i:n coincide. The
same conclusion for the lower bounds results from the last claim of Proposition 7 .

In Lemmas 5 and 6, we precisely describe maxima of (3.3.2) for various parameters i
and n.

Lemma 5. For every n ≥ 3

(i) function Ψ1:n has a unique maximum at 0, and Ψ1:n(0) = n,

(ii) function Ψn−1:n has a unique maximum at 1, and Ψn−1:n(1) = n.

Proof. We first focus on the case i = 1 and show that Ψ1:n is strictly decreasing on the
interval [0, 1]. Consider

Ψ′1:n(u) = n(1− u)n−3h1,n(u),

where

h1,n(u) = n(1− u)n−1[2(n− 1)u− 1]− n+ 2.

Observe that h1,n(0) = −2(n− 1), h1,n(1) = −(n− 2) and

h′1,n(u) = n(n− 1)(1− u)n−2(3− 2nu),
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which implies that h1,n is increasing on
[
0, 3

2n

]
and decreasing on

[
3

2n
, 1
]
. We show that

h1,n

(
3

2n

)
= 2n

(
1− 3

2n

)n
− (n− 2) < 0, n ≥ 3,

which means that
2n− 3

n− 2
<

(
2n

2n− 3

)n−1

, n ≥ 3.

By the Bernoulli inequality,(
2n

2n− 3

)n−1

> 1 +
3(n− 1)

2n− 3
=

5n− 6

2n− 3
, n ≥ 2.

It remains to notice that 5n−6
2n−3

≥ 2n−3
n−2

, which is equivalent to (n− 1)(n− 3) ≥ 0, n ≥ 3, and
verifies desired claim. Summing up, we have hn(u) < 0 and Ψ′n:1(u) < 0 for all 0 < u < 1
and n ≥ 3, which implies that

max
u∈[0,1]

Ψ1:n(u) = Ψ1:n(0) = n, n ≥ 3.

The conclusion for i = n − 1 follows from the relation Ψi:n(u) = Ψn−i:n(1 − u) and the
previous statement.

Lemma 6. Fix n ≥ 4 and 2 ≤ i ≤ n − 2. Function (3.3.2) has either a unique local
and global maximum or two local maxima and one local minimum between them. The local
extreme arguments are the only zeros of the polynomial

hi,n(u) = [2(n− 1)u− 2i+ 1]Bi,n(u)− u(n− 2) + i− 1. (3.3.4)

Let u0 = u0(i, n) denote the global maximum point.

Then u0(2, 4) ∈
{

1
2
−
√

6
6

+
√

3
6
, 1

2
+
√

6
6
−
√

3
6

}
and Ψ2:4(u0(2, 4)) = 2

√
2

3
≈ 0.94281.

For n > 4 yields

(i) if i < n
2

(i > n
2
), then u0(i, n) < 1

2
(u0(i, n) > 1

2
, respectively),

(ii) if n ≥ 6 is even, then u0

(
n
2
, n
)

= 1
2

and

Ψn
2

:n

(
1

2

)
=

(
n
n
2

)
1

2n−2

[
1−

(
n
n
2

)
1

2n

]
.
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Proof. For given n ≥ 4 and 2 ≤ i ≤ n− 2 we have:

Ψ′i:n(u) =

(
n

i

)
ui−2(1−u)n−2−ihi,n(u)=

(
n

i

)
ui−2(1−u)n−2−i

n+ 1

n+1∑
j=0

aj,n+1Bj,n+1(u)(3.3.5)

(
cf. (3.3.4)

)
, where

aj,n+1 =


−2(n− i)i, if j = i,
2(n− i)i, if j = i+ 1,
(i− 1)(n+ 1)− j(n− 2), otherwise.

(3.3.6)

Since 2 ≤ i ≤ n−2, the arithmetic sequence ãj,n+1 = (i−1)(n+1)−j(n−2), j ∈ {0, . . . n+1},
decreases from ã0,n+1 = (i − 1)(n + 1) > 0 to ãn+1,n+1 = −(n + 1)(n − 1 − i) < 0. For any
fixed i ∈ {2, . . . , n− 2}, if we replace any pair ãi,n+1, ãi+1,n+1 by arbitrary a < 0 and b > 0,
we obtain another sequence with consecutive signs + − +− (we suppressed here multiple

pluses and minuses, and dropped a possible zero at j = (i−1)(n+1)
n−2

). This holds true for
(3.3.6), in particular. By Lemma 1, Ψi:n is either first increasing and then decreasing or it is
consecutively increasing, decreasing, increasing and ultimately decreasing.

We now treat the case i = 2, n = 4 with use of standard calculus tools. By (3.3.5),

Ψ′2:4(u) = (2u− 1)[18u2(1− u)2 − 1] = (2u− 1)[3
√

2u(1− u)− 1][3
√

2u(1− u) + 1]

= 108

(
u− 1

2
+

√
6

6
+

√
3

6

)(
u− 1

2
+

√
6

6
−
√

3

6

)(
u− 1

2

)

×

(
u− 1

2
−
√

6

6
+

√
3

6

)(
u− 1

2
−
√

6

6
−
√

3

6

)
.

Hence the derivative Ψ′2:4 restricted to [0, 1] has three zeros at 1
2
, 1

2
−
√

6
6

+
√

3
6

, and 1
2
+
√

6
6
−
√

3
6

.

Moreover Ψ′2:4(u) > 0 iff either u ∈
(

0, 1
2
−
√

6
6

+
√

3
6

)
or u ∈

(
1
2
, 1

2
+
√

6
6
−
√

3
6

)
. By symmetry

of the function about 1
2
, we get

max
u∈[0,1]

Ψ2:4(u) = Ψ2:4

(
1

2
−
√

6

6
+

√
3

6

)
= Ψ2:4

(
1

2
+

√
6

6
−
√

3

6

)
=

2
√

2

3
≈ 0.94281.
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(i) Now we proceed to n ≥ 5. Observe that

Ψi:n(u) =

(
n

i

)
ui−1(1− u)n−1−i

 n∑
j=0

i 6=j 6=n−i

(
n

j

)
uj(1− u)n−j +

(
n

i

)
un−i(1− u)i


=

(
n

i

)
[u(1− u)]i−1(1− u)n−2i

n∑
j=0

i 6=j 6=n−i

(
n

j

)
uj(1− u)n−j +

(
n

i

)2

[u(1− u)]n−1,

and

Ψi:n(1− u) =

(
n

i

)
[u(1− u)]i−1un−2i

n∑
j=0

i 6=j 6=n−i

(
n

j

)
uj(1− u)n−j +

(
n

i

)2

[u(1− u)]n−1.

In consequence,

Ψi:n(u)−Ψi:n(1− u) =

(
n

i

)
[u(1− u)]i−1

n∑
j=0

i 6=j 6=n−i

(
n

j

)
uj(1− u)n−j[(1− u)n−2i − un−2i].

The sign of the difference is identical with that of the expression in square brackets. Therefore
for i < n

2
this difference is positive on (0, 1

2
) and negative on (1

2
, 1). If i > n

2
, the signs are

reversed. This immediately implies our claims.

(ii) Suppose finally that n ≥ 6 is even and i = n
2
. Due to (3.3.2), Ψn

2
:n is symmetric

about 1
2
, and Ψn

2
:n(1

2
) is a local extreme. We prove that this is a maximum, verifying that

Ψ′′n
2

:n(1
2
) < 0. Using i = n

2
for simplicity of notation we have

Ψ′′i:2i(u) =
(2i)![u(1− u)]i−3

i!4

[
i!2(i− 1)(4iu2 − 4iu− 6u2 + i+ 6u− 2)

− 2ui(1− u)i(2i)!(2i− 1)(4iu2 − 4iu− 3u2 + i+ 3u− 1)

]
,

Ψ′′i:2i

(1

2

)
=

(2i)!

22i−1i!4
h(i),

where

h(i) = 4−i(2i)!(2i− 1)− i!2(i− 1)
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determines the sign of Ψ′′i:2i

(
1
2

)
. We shall prove that h(i) < 0 for i ≥ 3 by induction. We

check that h(3) = −63
4

and assume that h(i) < 0 for some i ≥ 3 which is equivalent to(
2i
i

)
4−i
(
2 + 1

i−1

)
< 1. We show that the relation holds for i+ 1 as well. Indeed,(

2i+ 2

i+ 1

)
4−i−1

(
2 +

1

i

)
=

(
2i

i

)
4−i
(

2 +
1

i

)
2i+ 1

2(i+ 1)

<

(
2i

i

)
4−i
(

2 +
1

i− 1

)
2i+ 1

2i+ 2
<

(
2i

i

)
4−i
(

2 +
1

i− 1

)
< 1,

by the inductive assumption. This ends the proof.

We are not able to arbitrate theoretically which functions Ψi:n, 2 ≤ i ≤ n − 2, i 6= n
2
,

have one and two local maxima. Also, in the latter case, we not have tools for deciding if
both the local maxima are located in the same half of the unit interval. Numerical analysis
of functions (3.3.2) for small n shows that two maxima appear only for i = 2, n = 4
(see Lemma 6). If n increases, the possibility of two maxima becomes less likely. Note
that (3.3.2) can be represented as a linear combination of Bernstein polynomials Bj,2n−2,
j = i − 1, . . . , 2i − 2, 2i, . . . , n + i − 1, with positive coefficients. The full such combination
with j = i− 1, . . . , n+ i− 1 amounts to

(
n
i

)
ui−1(1− u)n−i−1 is certainly unimodal. It seems

that removing one component with j = 2i − 1 does not violate the property, and becomes
almost negligible, especially for large n.

Using Lemmas 5 and 6 we are able to specify general result of Proposition 7 for particular
1 ≤ i ≤ n − 1 and n ≥ 2. Only case i = 1 and n = 2 described in Proposition 8 needs an
additional justification. Propositions 9 and 10 are direct conclusions of Proposition 7 and
Lemmas 5 and 6.

Proposition 8. We have

2

3
≤ Var S1:2

Var X1

≤ Ψ1:2(0) = Ψ1:2(1) = 2.

The lower inequality becomes equality iff X1 and X2 are uniformly distributed.

Writing here and later that Var Si:n

VarX1
≤ (≥)Ψi:n(u0), we mean that the upper (lower, re-

spectively) bound amounts to Ψi:n(u0) and is attained by the two-point distribution (3.1.5)
with u = u0 if 0 < u0 < 1, and in the limit by a sequence of Fu with u → u0 if u0 = 0 or
u0 = 1. We use the convention for the sake of brevity.

Proof. The upper bound is evident by Proposition 7 , since

Ψ1:2(u) = 2[1− 2u(1− u)] = 2− 4u+ 4u2, 0 ≤ u ≤ 1,
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attains its maximal value 2 at 0 and 1. In order to establish the lower one, we first recall
formula due to Irvin (1925)

ES2
i:n = 2

(
n

i

)∫∫
x≤y

F i(x)[1− F (y)]n−idxdy,

representing the second raw moments of spacings (see also Jones and Balakrishnan, 2002,
formula (3.4)). This together with (1.3.3) imply that ES2

1:2 = 2Var X1. Accordingly, the
problem of minimizing

Var S1:2

Var X1

= 2− ES2
1:2

Var X1

(3.3.7)

is dual to that of maximizing |ES1:2|√
VarX1

. We focus on the later one. Suppose that X1, X2 are
independent, and have a common distribution function F with mean

µ =

∫ 1

0

F−1(x) dx,

and finite and positive variance

σ2 =

∫ 1

0

[F−1(x)− µ]2 dx.

Then

ES1:2 = E[F−1(U2:2)− F−1(U1:2)] =

∫
R
[F−1(x)− µ][f2:2(x)− f1:2(x)]dx,

where U1:2 and U2:2 denote the minimum and maximum of two i.i.d. standard uniform random
variables, and

f1:2(x) =

{
2(1− x), if 0 < x < 1,
0, otherwise,

f2:2(x) =

{
2x, if 0 < x < 1,
0, otherwise,

stand for the respective density functions. By Cauchy-Schwarz inequality,

|ES1:2| = 2

∣∣∣∣∫ 1

0

[F−1(x)− µ](2x− 1)dx

∣∣∣∣
≤ 2

√∫ 1

0

[F−1(x)− µ]2dx

∫ 1

0

(2x− 1)2dx =
2
√

3

3
σ.
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This is a special case of the classic bounds on the expectation of sample ranges due to
Plackett (1947), and together with (3.3.7), determine the lower variance bound. Observe
that the equality holds in the Cauchy-Schwarz inequality iff

F−1(x)− µ = α(2x− 1), 0 < x < 1, (3.3.8)

for some real α. Since F−1 is nondecreasing and nonconstant function, α has to be positive.
Condition

∫ 1

0
[F−1(x)− µ]2dx = σ2 implies that α =

√
3σ. Hence, equation (3.3.8) uniquely

determines the quantile function of the uniform distribution on the interval [µ −
√

3σ, µ +√
3σ]. Clearly, changing parameters µ and σ we obtain the uniform distribution on arbitrary

intervals. These distributions attain the lower variance bound of Proposition 8.

Proposition 9. If n ∈ N ∩ [3,∞), then:

0 = Ψ1:n(1) ≤ Var S1:n

VarX1
≤ Ψ1:n(0) = n,

0 = Ψn−1:n(0) ≤ Var Sn−1:n

VarX1
≤ Ψn−1:n(1) = n.

Proposition 10. If n ∈ N ∩ [4,∞) and i ∈ {2, . . . , n− 2}, then

0 = Ψi:n(0) = Ψi:n(1) ≤ V ar Si:n
Var X1

≤ Ψi:n(u0),

where u0 is described in Lemma 6.
In particular, for even n and i = n

2
, we have

0 = Ψ2:4(0) = Ψ2:4(1) ≤ Var S2:4

Var X1

≤ Ψ2:4

(
1

2
−
√

6

6
+

√
3

6

)

= Ψ2:4

(
1

2
+

√
6

6
−
√

3

6

)
=

2
√

2

3
≈ 0.94281,

0 = Ψn
2

:n(0) = Ψn
2

:n(1) ≤
Var Sn

2
:n

Var X1

≤ Ψn
2

:n

(
1

2

)
=

(
n
n
2

)
1

2n−2

[
1−

(
n
n
2

)
1

2n

]
, n ≥ 6.

Table 3.1 presents numerical values of upper bounds Ψi:20(u0(i, 20)) on variances of spac-
ings Si:20 for samples of size n = 20 and 1 ≤ i ≤ 10, together with respective arguments
u0(i, 20) which describe the two-point distribution functions (3.1.5) attaining the bounds
in (3.3.3). Respective values for 11 ≤ i ≤ 19 are immediately deduced from the relations
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Table 3.1: Upper bounds on variances of spacings Var(Xi+1:n−Xi:n)
VarX1

for i = 1, . . . , 10 and n = 20.

i u0(i, 20) Ψi:20(u0(i, 20)) i u0(i, 20) Ψi:20(u0(i, 20))
1 0 20 6 0.27038 0.75942
2 0.04347 3.25396 7 0.32794 0.67092
3 0.09792 1.71152 8 0.38537 0.61799
4 0.15502 1.17002 9 0.44271 0.58958
5 0.21270 0.90714 10 0.5 0.58061

u0(i, n) = 1 − u0(n − i, n) and Ψi:20(u0(i, n)) = Ψn−i:n(u0(n − i, n)). We can see that if i
increases from 1 to 10, then u0(i, 20) increase from 0 to 0.5, whereas Ψi:20(u0(i, 20)) decrease
from 20 to 0.58061. From Proposition 10 and the Stirling formula we deduce that the upper

bounds for the central spacings with i = n
2

decrease to 0 at the rate 4
√

2π
n

as n increases to

infinity. By Proposition 9, the respective bounds for the extreme spacings tend to infinity
faster.

3.4 Linear combinations of spacings based on three ob-

servations

Proposition 11 presented below shows that determination of bounds on variances of L-
statistics for general choices of combination coefficients is a difficult task.

Proposition 11. If X1, X2, X3 are i.i.d. with a finite and positive variance, then under
notation Si:3 = Xi+1:3 −Xi:3, i = 1, 2, for every a1, a2 ∈ R bound

Var(a1S1:3 + a2S2:3)

Var X1

≤ 3 max{a2
1, a

2
2}.

is best possible. If |a1| ≥ |a2| (|a1| ≤ |a2|, respectively), then the equality is attained under
conditions of Theorem 3(ii)

(
(iii), respectively

)
.

Proof. Cases a1 = 0 and a2 = 0 were solved in Proposition 9. Since Var(a1S1:3 + a2S2:3) =
a2

1Var(S1:3 +aS2:3) for a1 6= 0 and a = a2
a1

, it suffices to consider Var(S1:3 +aS2:3) for arbitrary
a ∈ R \ {0}.

If c = (−1, 1− a, a), then (3.1.2) takes on the form

Φa(u, v) = (3− 3v)[1− 3v(1− u)2] + 3a2u[1− 3v2(1− u)]

+ a[6v − 6u− 9(1− u)2v2 − 9u(1− u)v(1− v)].
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Note that this is a quadratic function in each u, v, and a. Our purpose is to calculate
max0≤u≤v≤1 Φa(u, v).

We first show that we can exclude all the interior points of triangle 0 ≤ u ≤ v ≤ 1. For
fixed a ≥ 1 and 0 < v < 1, quadratic function Φa(u, v), 0 ≤ u ≤ v, is convex, because

∂2

∂u2
Φa(u, v) = 18v(a− 1)[v(a− 1) + 1] ≥ 0.

Accordingly,
Φa(u, v) ≤ max{Φa(0, v),Φa(v, v)}, 0 ≤ u ≤ v.

Case a < 1 needs more elaborate arguments. Note that

∂2

∂v2
Φa(u, v) = 18(u− 1)(a− 1)[u(a− 1) + 1] ≥ 0

for some 0 < u < 1 iff either 0 < u < 1 with 0 < a < 1 or 0 < u ≤ 1
1−a with a < 0. Under

these restrictions

Φa(u, v) ≤ max{Φa(u, u),Φa(u, 1)}, u ≤ v ≤ 1.

If a < 0 and 1
1−a < u < 1, function Φa(u, ·) is increasing-decreasing, and has the global

maximum at

v0 = −3au2 − 3au− 3u2 + 2a+ 6u− 4

6(a− 1)(u− 1)[u(a− 1) + 1]
.

We show that v0 < u which gives Φa(u, v) ≤ Φa(u, u) when a < 0 and 1
1−a < u < 1 and

u ≤ v ≤ 1. Relation v0 < u is equivalent to

(u− 1)(a− 1)[u(a− 1) + 1]g(a, u) > 0 (3.4.1)

where

g(a, u) = a2u3 − a2u2 − 2au3 +
7

2
au2 + u3 − 3

2
au− 5

2
u2 + 2u+

1

3
a− 2

3
.

Under the assumptions, the first three factors in (3.4.1) are negative, and it suffices to check
that g(a, u) < 0 then. Observe first that

g(0, u) = u3 − 5

2
u2 + 2u− 2

3
< 0

iff

u <
3
√

17 + 12
√

2

6
+

1

6
3
√

17 + 12
√

2
+

5

6
≈ 1.4246
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which implies that g(0, u) < 0 for all 0 < u < 1. Moreover

∂

∂a
g(a, u) = 2au3 − 2au2 − 2u3 +

7

2
u2 − 3

2
u+ 1/3 > 0

when

a <
12u3 − 21u2 + 9u− 2

12u2(u− 1)
.

Since the right-hand side is positive for all 0 < u < 1, the proof of inequality v0 < u is
complete. In conclusion, under condition a < 1 we obtain

Φa(u, v) ≤ max{Φa(u, u),Φa(u, 1)}, u ≤ v ≤ 1.

Summing up, we proved that

max
0≤u≤v≤1

Φa(u, v) = max
0≤u≤1

{max{Φa(0, u),Φa(u, 1),Φa(u, u)}}.

Now we exclude the last possibility proving that for all 0 ≤ u ≤ 1

Ψa(u) ≤ Ψa(0), if |a| ≤ 1, (3.4.2)

Ψa(u) ≤ Ψa(1), if |a| ≥ 1, (3.4.3)

where Ψa(u) = Φa(u, u) (cf (3.1.2)). The first inequality is equivalent to

3u[(3u3 − 3u2 + 1)a2 − 6u(u− 1)2a− 9u2 + 9u− 4] ≤ 0.

The sign of the left-hand side is identical with that of the expression in the brackets. Since
the coefficient 3u3 − 3u2 + 1 associated with a2 is positive for 0 ≤ u ≤ 1, and so is the
discriminant 4(6u2 − 9u+ 4) for all real u, the inequality holds true if

3u3 − 6u2 + 3u−
√

6u2 − 9u+ 4

3u3 − 3u2 + 1
≤ a ≤ 3u3 − 6u2 + 3u+

√
6u2 − 9u+ 4

3u3 − 3u2 + 1
.

The left- and right-hand side restrictions are for all 0 ≤ u ≤ 1 less than −1 and greater
than 1, respectively. Therefore relation (3.4.2) holds for all |a| ≤ 1. Inequality (3.4.3) can be
rewritten as

3(u− 1)[(3u3 + 1)a2 + 6u2(1− u)a+ 3u3 − 6u2 + 3u− 1] ≤ 0.

By similar arguments, this is true when either

a ≤ 3u2(u− 1)−
√

6u2 − 3u+ 1

3u3 + 1

52



or

a ≥ 3u2(u− 1) +
√

6u2 − 3u+ 1

3u3 + 1
.

Since the right-hand side expressions range over [−1, 1) and [0, 1], respectively, when u ≥ 0,
inequality (3.4.3) holds when |a| ≥ 1 and 0 ≤ u ≤ 1.

Now we can focus on

Φa(0, u) = 3 [3(1− a)u2 + 2(a− 2)u+ 1],

Φa(u, 1) = 3a [3(a− 1)u2 − 2(a− 2)u− 1].

Simple calculations show that

max
0≤u≤1

Φa(0, u) =


Φa(0, 1) = −3a, a ≤ −1,
Φa(0, 0) = 3, −1 ≤ a ≤ 2,

Φa

(
0, a−2

3(a−1)

)
= a2−a+1

a−1
, a ≥ 2,

and

max
0≤u≤1

Φa(u, 1) =


Φa(1, 1) = 3a2, a ≤ −1,
Φa(0, 1) = −3a, −1 ≤ a ≤ 0,

Φa

(
a−2

3(a−1)
, 1
)

= a(a2−a+1)
1−a , 0 ≤ a ≤ 1

2
,

Φa(1, 1) = 3a2, a ≥ 1
2
.

Summing up, we obtain

max
0≤u≤1

{max{Φa(0, u),Φa(u, 1)}} =

{
Φa(0, 0) = 3, |a| ≤ 1,
Φa(1, 1) = 3a2, |a| ≥ 1,

and
Var(a1S1:3 + a2S2:3)

Var X1

≤
{
a2

1Ψa(0) = 3a2
1, |a1| ≥ |a2|,

a2
1Ψa(1) = 3a2

2, |a1| ≤ |a2|.
Since the extreme values of Φa appear at the vertices of the triangle hypotenuse, the variance
bounds are sharp for all the pairs a1, a2 ∈ R. They are attained under conditions of Theorem
3(ii) and (iii), when |a1| ≥ |a2| and |a1| ≤ |a2|, respectively.
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Chapter 4

Bounds on expectations of linear
combinations of kth records

Let X1, X2, . . . be i.i.d. random variables with common continuous cumulative distribution
function F . In this chapter, we determine sharp lower and upper bounds for expectations
of arbitrary linear combinations of respective kth records E

[∑n
i=1 ci(Ri,k − µ

)]
, centered

about the population mean µ = EX1, and expressed in the Gini mean difference units
∆ = E|X1 − X2|. Moreover, we specify the bounds on the expectations of centered kth
records Rn,k − µ, and their differences Rn,k −Rm,k.

By now, various evaluations of E
[∑n

i=1 ci(Ri,k − µ
)]

for specific c = (c1, . . . , cn) were

presented in terms of scale units σp = [E|X1 − µ|p]1/p generated by pth absolute central
moments. The first result of this type was presented by Nagaraja (1978) who applied the
Schwarz inequality for getting sharp bounds on the expectations of the classic record values
expressed in terms of the mean µ and standard deviation σ2 of the parent distribution. Raqab
(2000) used the Hölder inequality in order to receive bounds expressed in terms of other scale
units σp, p ≥ 1. He also derived refined estimates of the records coming from symmetric
populations. Rychlik (1997) evaluated the expectations of record spacings E(Rn,1−Rn−1,1) in
the general populations as well as under the restrictions to the distributions with increasing
density and increasing failure rate. Danielak (2005) generalized these results to arbitrary
record increments Rn,1 −Rm,1, n > m.

For general kth records, Grudzień and Szynal (1985) obtained non-optimal evaluations in
terms of µ and σ2 by direct use of the Schwarz inequality. Raqab (1997) applied a modification
of the Schwarz inequality proposed by Moriguti (1953) in order to get optimal bounds. Raqab
and Rychlik (2002) used both the Moriguti and Hölder inequalities and calculated the bounds
measured in various σp units. Similar results for the differences of adjacent and non-adjacent
kth records were derived by Raqab (2004), and Danielak and Raqab (2004a), respectively.
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Goroncy and Rychlik (2011) determined the lower bounds on the expectations of centered
values of kth records, and their differences expressed in σp units.

Raqab and Rychlik (2004) calculated optimal evaluations for the 2nd record values coming
from symmetric populations. Gajek and Okolewski (2003) provided the sharp bounds on the
expectations of kth records coming from the decreasing density and failure rate populations
expressed in the population second raw moments. Optimal mean-variance inequalities for the
expected kth record spacings from the above models were presented in Danielak and Raqab
(2004b). Second record non-adjacent differences coming from populations with decreasing
density functions were studied in Raqab (2007). Tight upper bounds for the kth record
values from the decreasing generalized failure rate populations were established by Bieniek
(2007). Klimczak (2007) calculated sharp bounds on the expectations of kth records and
their differences coming from bounded populations. They were expressed in the scale units
amounting to the lengths of the population support intervals.

4.1 Linear combinations of kth record values

By (1.2.5), for every n, k ∈ N, the distribution function of the nth value of the kth record
coming from the standard uniform distribution is following

FU
n,k(u) = 1− (1− u)k

n−1∑
i=0

[−k ln(1− u)]i

i!
, 0 < u < 1, (4.1.1)

whereas the composition FX
n,k = FU

n,k ◦ F is the distribution function of the nth value of kth
record coming from the population with continuous distribution function F . Below we use
the following notions

ξn,k(u) = (1− u)k−1

n−1∑
i=0

[
− k ln(1− u)

]i
i!

− 1, (4.1.2)

Ξn,k(u) =
ξn,k(u)

2u
, (4.1.3)

ξc,k(u) =
n∑
i=1

ciξi,k(u)

= (1− u)k−1

n−1∑
i=0

bi+1
[−k ln(1− u)]i

i!
− b1, (4.1.4)

Ξc,k(u) =
n∑
i=1

ciΞi,k(u) =
ξc,k(u)

2u
, (4.1.5)
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where c = (c1, . . . , cn) ∈ Rn, and bi =
∑n

j=i cj, i = 1, . . . , n.

Theorem 5. Let X1, X2, . . . be an i.i.d. sequence with a common continuous distribution
function, expectation µ = EX1 ∈ R, and Gini mean difference ∆ = E|X1 − X2|. Let
R1,k, R2,k, . . . denote the respective sequence of kth upper records, and assume that ERn,k <∞.
Then for arbitrary c = (c1, . . . , cn) ∈ Rn, with the notation (4.1.2)-(4.1.5), we have

inf
0<u<1

Ξc,k(u) ≤
E
[∑n

i=1 ci(Ri,k − µ
)]

∆
≤ sup

0<u<1
Ξc,k(u). (4.1.6)

Let Fm,a denote the distribution function of the uniform random variable on the interval[
a− 1

m
, a
]
. If the supremum (infimum) in (4.1.5) is attained at some 0 < u1 < 1, then the

upper (lower) bound in (4.1.6) is attained in the limit by the sequence of parent distribution
functions Fm = u1Fm,a + (1 − u1)Fm,b for arbitrary a < b. If the supremum (infimum) is
attained there in the limit as u↘ 0 (u↗ 1), then the upper (lower) bound is attained in the
limit by any sequence of distribution functions Fm = umFm,a + (1− um)Fm,b as m→∞ and
um ↘ 0 (um ↗ 1, respectively) whereas a < b.

Proof. We start with a useful representation of the expectations of record spacings. For
1 ≤ i ≤ n− 1 , we have

E(Ri+1,k −Ri,k) =

∫ ∞
−∞

xFU
i+1,k(F (dx))−

∫ ∞
−∞

xFU
i,k(F (dx))

=

∫ ∞
−∞

x
(
(FU

i+1,k − FU
i,k) ◦ F

)
(dx).

Integrating by parts, we obtain

E(Ri+1,k −Ri,k) = x
[
FU
i+1,k (F (x))− FU

i,k (F (x))
]∣∣∣∞
−∞

−
∫ ∞
−∞

(
FU
i+1,k (F (x))− FU

i,k (F (x))
)
dx.

Since E(|Ri,k|) < ∞, i = 0, . . . , n, the first ingredient of the above sum is equal to 0 (note
that for x↗∞, the difference of distribution functions can be treated as the negative of the
difference of respective survival functions). Thus, by (4.1.1), we have

E(Ri+1,k −Ri,k) =

∫ ∞
−∞

[
1− F (x)

]k [− k ln(1− F (x))
]i

i!
dx. (4.1.7)
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We also note that R1,k = X1:k and µ = E
(

1
k

∑k
j=1 Xj

)
= E

(
1
k

∑k
j=1Xj:k

)
. Therefore

E(Rn,k − µ) = E

[
n−1∑
i=1

(
Ri+1,k −Ri,k

)
− 1

k

k∑
j=1

(Xj:k −X1:k)

]

= E

[
n−1∑
i=1

(
Ri+1,k −Ri,k

)
− 1

k

k∑
j=2

j−1∑
l=1

(Xl+1:k −Xl:k)

]

= E

[
n−1∑
i=1

(
Ri+1,k −Ri,k

)
−

k−1∑
l=1

k − l
k

(Xl+1:k −Xl:k)

]
.

We further use integral representations of the expected spacings

E(Xl+1:k −Xl:k) =

∫ ∞
−∞

(
k

l

)
F l(x)

[
1− F (x)

]k−l
dx, l = 1, . . . , k − 1, (4.1.8)

due to Pearson (1902) (see also Jones and Balakrishnan, 2002, formula (3.1)). In particular,
we have

∆ = E|X1 −X2| = E(X2:2 −X1:2) = 2

∫ ∞
−∞

F (x)[1− F (x)]dx. (4.1.9)

Combining (4.1.7) and (4.1.8), we write

E(Rn,k − µ) =

∫ ∞
−∞

{[
1− F (x)

]k n−1∑
i=1

[−k ln(1− F (x))]i

i!

−
k−1∑
i=1

k − i
k

(
k

i

)
F i(x)

[
1− F (x)

]k−i}
dx

=

∫ ∞
−∞

2F (x)
[
1− F (x)

]
Ξn,k

(
F (x)

)
dx,

where

Ξn,k(u) =
(1− u)k−1

2u

n−1∑
i=1

[−k ln
(
1− u

)
]i

i!
− 1

2u

k−1∑
i=1

(
k − 1

i

)
ui(1− u)k−1−i

=
(1− u)k−1

2u

n−1∑
i=1

[−k ln
(
1− u

)
]i

i!
− 1− (1− u)k−1

2u

=
(1− u)k−1

∑n−1
i=0

[−k ln(1−u)]i

i!
− 1

2u
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(
cf (4.1.3)

)
. Finally, for arbitrary c ∈ Rn, we get

E

[
n∑
i=1

ci(Ri,k − µ
)]

=

∫ ∞
−∞

2F (x)
[
1− F (x)

]
Ξc,k

(
F (x)

)
dx, (4.1.10)

with

Ξc,k(u) =
n∑
i=1

ciΞi,k(u) =
(1− u)k−1

∑n
i=1 ci

∑i−1
j=0

[−k ln(1−u)]j

j!
−
∑n

i=1 ci

2u

=
(1− u)k−1

∑n−1
j=0

(∑n
i=j+1 ci

)
[−k ln(1−u)]j

j!
−
∑n

i=1 ci

2u
=
ξc,k(u)

2u

(cf (4.1.5) and (4.1.4)). Inequalities (4.1.6) are immediate consequences of (4.1.9) and
(4.1.10).

Now we verify the conditions of getting the equality in the right-hand side inequality of
(4.1.6). The arguments justifying the lower bounds attainability are similar. Suppose first
that Ξc,k(u1) = sup0<u<1 Ξc,k(u) for some 0 < u1 < 1. The equality∫ ∞

−∞
2F (x)

[
1− F (x)

]
Ξc,k

(
F (x)

)
dx = sup

0<u<1
Ξc,k(u)

∫ ∞
−∞

2F (x)
[
1− F (x)

]
dx (4.1.11)

holds iff either F (x) = 0 or F (x) = 1 or Ξc,k(F (x)) = Ξc,k(u1) for almost all x ∈ R. The
conditions are satisfied by any two-point distribution function

Fu1(x) =


0, x < a,
u1, a ≤ x < b,
1, x ≥ b,

a < b,

that assigns probability u1 to the smaller point a of its support. We have

EmRi,k =

∫ ∞
−∞

xFU
i,k(Fm(dx)) ↗ Eu1Ri,k =

∫ ∞
−∞

xFU
i,k(Fu1(dx)) <∞,

EmX1 =

∫ ∞
−∞

xFm(dx) ↗ Eu1X1 =

∫ ∞
−∞

xFu1(dx) <∞,

EmXi:2 =

∫ ∞
−∞

xHi:2(Fm(dx)) ↗ Eu1Xi:2 =

∫ ∞
−∞

xHi:2(Fu1(dx)) <∞, i = 1, 2,

as m → ∞, where H1:2(u) = 1 − (1 − u)2 and H2:2(u) = u2, 0 < u < 1, are the distribution
functions of the minimum and maximum of two i.i.d. standard uniform random variables.
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Therefore

lim
m→∞

Em
∑n

i=1 ci(Ri,k −X1)

Em(X2:2 −X1:2)
=

Eu1
∑n

i=1 ci(Ri,k −X1)

Eu1(X2:2 −X1:2)

=
1

∆u1

∫ ∞
−∞

2Fu1(x)[1− Fu1(x)]Ξc,k

(
Fu1(x)

)
dx

= sup
0<u<1

Ξc,k(u),

(
cf (4.1.9) and (4.1.10)

)
, as claimed.

Assume now that sup0<u<1 Ξc,k(u) = limu↘0 Ξc,k(u). Replacing u1 of the previous para-
graph by arbitrary 0 < u < 1, and setting Fu,m = uFm,a + (1− u)Fm,b, we obtain

Eu,m
n∑
i=1

ci(Ri,k − µ)→ Ξc,k(u)

∫ ∞
−∞

2Fu(x)
[
1− Fu(x)

]
dx.

Replacing fixed u by elements of a sequence um ↘ 0, we finally get

Eum,m
∑n

i=1 ci(Ri,k − µ)

∆um,m

↗ sup
0<u<1

Ξc,k(u).

We proceed in a similar way if sup0<u<1 Ξc,k(u) = limu↗1 Ξc,k(u).

Remark 7. It is natural to assume that cn 6= 0. Then for k = 1 and n ≥ 2, function Ξc,k is
unbounded in the left neighborhood of 1. It tends either to +∞ or to −∞ there, and the sign
coincides with the sign of bn = cn. It is clear that E|X1| <∞ implies ∆ = E(X2:2−X1:2) <∞.
Nagaraja (1978) (see also Arnold et al, 1998, p. 29) constructed parent distribution functions
such that E|X1| <∞ and ERn−1,1 <∞, but ERn,1 = +∞. This justifies the claim that in the
case of the 1st records, there is no finite upper (lower) bound for E

∑n
i=1 ci(Ri,k−µ)/∆, when

cn > 0 (cn < 0, respectively). However, it may be surprising that we can get arbitrarily large
value (positive or negative one) even if we restrict ourselves to very simple parent distributions
with arbitrarily small supports.

If k > 1, finiteness of the population mean implies that of all kth records. Note that our
bounds are also finite under the assumption.

Remark 8. There are numerous possibilities of modifying the sequences of distributions
attaining the bounds. In the construction Fu1,m = u1Fm,a + (1 − u1)Fm,b, the sequences of
uniform distribution functions Fm,a, Fm,b, m ∈ N, can be substituted with any sequences of
continuous distribution functions converging weakly to degenerate ones Fa, Fb concentrated at
a and b, respectively. Also, fixed u1, a and b, can be replaced by sequences um, am, bm, with the
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only restrictions that un → u1, and am < bm. Moreover, particular Ξc,k may have multiple
extremes. For instance, if 0 < u1 < . . . < ur < 1 are some arguments maximizing Ξc,k (not
necessarily all), then the equality in (4.1.11) holds for F = u1Fa0 +

∑r−1
i=1 (ui+1 − ui)Fai +

(1− ur)Far for some a0 < . . . < ar. In consequence, the upper bound is also attained for any
sequence of continuous parent distribution functions tending weakly to the above (r+ 1)-point
distribution function. Similar modifications can be used if the extremes of (4.1.5) are attained
in the limit.

4.2 Single kth record values

In this section we specify sharp bounds of Theorem 5 for the most practically important
cases of single kth record values and the differences of various kth records. By the theorem,
the bounds in the first case coincide with extreme values of functions (4.1.3). Note that their
derivatives vanish iff

χn,k(u) = 2u2Ξ′n,k(u) = uξ′n,k(u)− ξn,k(u)

= u(1− u)k−2

[
n−2∑
i=0

[−k ln(1− u)]i

i!
− (k−1)

[−k ln(1−u)]n−1

(n− 1)!

]

− (1−u)k−1

n−1∑
i=0

[−k ln(1−u)]i

i!
+ 1 = 0. (4.2.1)

We do not treat here the first values of kth records R1,k, because they coincide with the first
order statistics X1:k, and the respective evaluations were presented in the second chapter.

Proposition 12. Let X1, X2, . . . be i.i.d. with continuous distribution function with finite
expectation µ = EX1, and Gini mean difference ∆ = E|X1 − X2|. We also assume that
E|Rn,k| < ∞. Then, for various natural n ≥ 2 and k ≥ 1, we have the following sharp
bounds.

(i) For n ≥ 2 and k = 1, yields

1

2
= Ξn,1(0+) ≤ E(Rn,1 − µ)

∆
≤ Ξn,1(1−) =∞.

(ii) If n = k = 2, then

−1

2
= Ξ2,2(1−) ≤ E(R2,2 − µ)

∆
≤ Ξ2,2(0+) =

1

2
.
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(iii) For n ≥ 3 and k = 2

−1

2
= lim

u↗1−
Ξn,2(1−) ≤ E(Rn,2 − µ)

∆
≤ Ξn,2(u1) >

1

2
,

where u1 ∈ (0, 1) is the unique solution to the particular version of equation (4.2.1)
with k = 2.

(iv) For n = 2 and k ≥ 3

−1

2
> Ξ2,k(u1) ≤ E(R2,k − µ)

∆
≤ Ξ2,k(0+) =

1

2
,

where u1 ∈ (0, 1) is the unique solution to the particular version of (4.2.1) with n = 2.

(v) For k ≥ 3 and n ≥ 3, we have

−1

2
> Ξn,k(u2) ≤ E(Rn,k − µ)

∆
≤ Ξn,k(u1) >

1

2
,

with 0 < u1 < u2 < 1 being the only two solutions to (4.2.1).

For brevity of presentation, we do not describe precisely attainability conditions. E.g.,
writing that for some parameters n and k, the upper bound (or lower one) is equal to
Ξn,k(u1) for some uniquely specified u1, we refer to Theorem 5, where a sequence of mixtures
Fm = u1Fm,a + (1 − u1)Fm,b of uniform distributions attaining the bound in the limit is
described. Similarly, notations Ξn,k(0+) and Ξn,k(1−) mean that the extreme values of Ξn,k

are attained in the limit as u↘ 0 and u↗ 1, respectively, and the conditions of attainability
can be found again in Theorem 5. We also refer to Remark 8 for their possible relaxations.
We adhere to this convention later on as well.

In the proof of Proposition 12 and some further results we use the following elementary
lemma.

Lemma 7. Let ψ : (a, b) → R, 0 ≤ a < b, be twice differentiable function, Ψ(x) = ψ(x)/x
and χ(x) = x2Ψ′(x) = xψ′(x)− ψ(x) with χ′(x) = xψ′′(x). We have the following.

(i) If ψ is positive and decreasing, then Ψ decreases.

(ii) If ψ is negative and increasing, then Ψ increases.

(iii) Assume that ψ is convex.

(a) If limx↗b− χ(x) ≤ 0, then Ψ is decreasing.
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(b) If limx↘a+ χ(x) ≥ 0, then Ψ is increasing.

(c) If limx↘a+ χ(x) < 0 < limx↗b− χ(x), then there exists c ∈ (a, b) such that Ψ de-
creases on (a, c] and increases on [c, b).

(iv) Suppose that ψ is concave.

(a) If limx↘a+ χ(x) ≤ 0, then Ψ is decreasing.

(b) If limx↗b− χ(x) ≥ 0, then Ψ is increasing.

(c) If limx↘a+ χ(x) > 0 > limx↗b− χ(x), then there exists c ∈ (a, b) such that Ψ in-
creases on (a, c] and decreases on [c, b).

Function Ψ(x) = ψ(x)
x

represents the slope of the straight line passing through the origin of
the real plane, and the graph of ψ at x. This is increasing (decreasing) there if the slope
is less (greater) than that of of the line tangent to ψ at x. Function ψ is called starshaped

(antistarshaped) if ψ(x)
x

is nondecreasing (nonincreasing, respectively).

Proof. (i),(ii) By definition, sgn
(
Ψ′(x)

)
= sgn

(
χ(x)

)
. Assume that ψ is positive and decreas-

ing. Then χ(x) = xψ′(x)−ψ(x) < 0 for all x ∈ (a, b), Ψ′(x) < 0, and Ψ decreases. Similarly,
if ψ is negative and increasing, then χ(x) = ψ′(x)x− ψ(x) > 0, and hence Ψ increases.
(iii) We have χ′(x) = xψ′′(x) > 0. Under assumption that ψ is convex, function χ(x) in-
creases for all a < x < b. Accordingly, if limx↗b− χ(x) ≤ 0, then χ(x) < 0 for all x ∈ (a, b),
and so Ψ is decreasing. If limx↘a+ χ(x) ≥ 0, then χ(x) > 0 and Ψ is increasing. Finally,
when limx↘a+ χ(x) < 0 < limx↗b− χ(x), then by Darboux’s theorem, there exists a < c < b
such that Ψ first decreases on (a, c], and then increases on [c, b).
(iv) The proof is analogous to that of (iii).

Proof of Proposition 12. By Theorem 5, it suffices to determine the extremes of (4.1.3). We
first examine variability of its numerator (4.1.2). We immediately check that ξn,k(0+) = 0
for all k ≥ 1 and n ≥ 2 (and for n = 1 as well, but we do not consider the case here). Also,

ξn,k(1−) =

{
+∞, k = 1,
−1, k ≥ 2,

n ≥ 2.

We further have

ξ′n,k(u) = (1− u)k−2

[
n−2∑
i=0

[−k ln(1− u)]i

i!
− (k − 1)

[−k ln(1− u)]n−1

(n− 1)!

]
. (4.2.2)

If k = 1, the last term in the square brackets vanishes, and so ξ′n,1(u) > 0. When k ≥ 2, due
to Lemma 2, (4.2.2) is first positive, and then negative. In consequence, for k ≥ 2 function
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(4.1.2) is first increasing, and ultimately decreasing. Note that the function is necessarily
concave about its maximum, because it is smooth.

The second derivative amounts to

ξ′′n,k(u) = (1− u)k−3

[
n−3∑
i=0

2
[−k ln(1− u)]i

i!
− (k2 − 2)

[−k ln(1− u)]n−2

(n− 2)!

+ (k − 1)(k − 2)
[−k ln(1− u)]n−1

(n− 1)!

]
. (4.2.3)

The sum in the brackets does not appear for n = 2. The middle term is positive for k = 1,
and negative otherwise. The last one vanishes for k = 1 and 2. Applying Lemma 2, we obtain
the following conclusions. Function (4.2.3) is positive for k = 1 and n ≥ 2, and negative for
k = n = 2. It is first negative, and then positive for n = 2 and k ≥ 3. For k = 2 and n ≥ 3,
it is consecutively positive, and negative. And finally for k, n ≥ 3, the sign order is + − +.
Notice that negative part cannot be dropped here, because ξn,k has a concavity region about
its global maximum.

Summing up, we arrived to the following conclusions. If k = 1 and n ≥ 2, function (4.1.2)
convexly increases from 0 at 0 to +∞ at 1. For k = n = 2, (4.1.2) is increasing-decreasing,
and concave everywhere. When k = 2 and n ≥ 3, it is first convex increasing, then concave
increasing, and finally concave decreasing. For n = 2 and k ≥ 3, it is concave increasing
on the left, concave decreasing in the center, and convex decreasing on the right. In all the
remaining cases k, n ≥ 3, the function is consecutively convex increasing, concave increasing,
concave decreasing, and convex decreasing.

Now we are in a position to analyze variability of (4.1.3) which is our main task. We start
with calculating limit values of (4.1.3) at the end-points 0 and 1. By the de l’Hospital rule,
for all n ≥ 2,

Ξn;k(0+) = lim
u↗0

(1− u)k−1 − 1

2u
+

n−1∑
i=1

lim
u↗0

[−k ln(1− u)]i

2ui!

= lim
u↗0

(1− k)(1− u)k−2

2
+

n−2∑
i=0

lim
u↗0

k[−k ln(1− u)]i

2(1− u)i!

=
1− k

2
+
k

2
=

1

2
.

Also,

Ξn,k(1−) =

{
+∞, k = 1,
−1

2
, k ≥ 2,

n ≥ 2,
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Knowing the shapes of (4.1.2), and using Lemma 7 with ψ(u) = ξn,k(u), Ψ(u) = 2Ξn,k(u),
χ(u) = χn,k(u) = 2u2Ξ′n,k(u) = uξ′n,k(u) − ξn,k(u), 0 < u < 1, we are able to describe
monotonicity properties of (4.1.3).

Analysis of the case k = 1 < n is the simplest one. We have χn,1(0+) = 0, and function
ξn,1 convexly increases from ξn,1(0+) = 0 to ξn,1(1−) = +∞. By Lemma 7(iiib), Ξn,1 increases
from the Ξn,1(0+) = 1

2
to Ξn,1(1−) = +∞.

We proceed to k ≥ 2 and consider the most sophisticated case with k, n ≥ 3. For the other
ones, we refer to some arguments presented here. We assume that ξn,k is convex increasing
on (0, a), concave increasing on (a, b), concave decreasing on (b, c), and convex decreasing
on (c, 1) for some 0 < a < b < c < 1, and ξn,k(d) = 0 for some b < d < 1. Note that

χn,k(0+) = limu↗0 u
[
ξ′n,k(u)− ξn,k(u)

u

]
= 0. By Lemma 7(iiib), Ξn,k is increasing on (0, a).

We have χn,k(a) > 0, because the line tangent to ξn,k at the inflexion point a runs below

the line
ξn,k(a)

a
u joining the origin point with (a, ξn,k(a)) on (0, a), and above on (a, 1), which

means that it has a greater slope. We also have χn,k(b) = −ξn,k(b) < 0 at the maximum
point b. Owing to Lemma 7(ivc), there is a point a < u1 < b such that Ξn,k increases on
(a, u1) and decreases on (u1, b). By Lemma 7(i), Ξn,k decreases on (b, d). Suppose now that
d < c. Then χn,k(d) = dξ′n,k(d) < 0, and so Ξn,k still decreases on (d, c) by Lemma 7(iva).

Comparing the slopes of straight lines ξn,k(c) + ξ′n,k(c)(u− c) and
ξn,k(c)

c
u, we conclude that

χn,k(c) < 0. We also observe that χn,k(1−) = −ξn,k(1−) = 1 > 0. With use of the last
claim of Lemma 7(iii), we conclude that Ξn,k decreases on (c, u2) and increases on (u2, 1) for
some c < u2 < 1. If d ≥ c, we again recall the relations χn,k(d) < 0 < χn,k(1−) and Lemma
7(iiic) for deducing that there exists d < u2 < 1 such that Ξn,k decreases on (d, u2) and
increases on (u2, 1). Combining the above results, we arrive to the following conclusion: Ξn,k

first increases from 1
2

at 0+ to Ξn,k(u1) > 1
2
, and the decreases to Ξn,k(u2) < −1

2
, and finally

increases to −1
2

at 1−. This implies that the global maximum and minimum are attained at
u1 and u2, respectively, which are the only local extremes of Ξn,k in (0, 1).

If k = 2 < n, function ξn,2 does not have a decreasing convex part at the left neighborhood
of 1. We can just put c = 1 > d > b, and repeat the above reasoning omitting analysis
of the functions on the interval (c, 1), when d < c. Case c ≤ d < 1 is impossible then. In
consequence, we observe that Ξn,2 increases from Ξn,2(0+) = 1

2
to Ξn,2(u1) > 1

2
, and decreases

to Ξn,2(1−) = −1
2
. The global extremes are Ξn,2(u1) > 1

2
, and Ξn,2(1−) = −1

2
.

For n = 2 < k, ξ2,k is deprived of the increasing convex part on the left. However,
then we still have χ2,k(0+) = 0, and we can use the argument of Lemma 7(iva) to conclude
that Ξ2,k is decreasing on (a, b) with a = 0. Then we repeat the reasoning of the previous
paragraph applied to studying functions ξn,k, χn,k, and Ξn,k on the interval (b, 1). Accordingly,
we conclude that Ξ2,k decreases from Ξ2,k(0+) = 1

2
to Ξ2,k(u1) < −1

2
, and increases to

Ξ2,k(1−) = −1
2
. This means that −1

2
> Ξ2,k(u1) ≤ Ξ2,k(u) < Ξ2,k(0+) = 1

2
.
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For k = n = 2, we can reduce the arguments as in the two above cases by removing from
analysis two convexity intervals of ξn,k appearing in both the ends of the unit interval. As a
result, we observe that Ξ2,2 decreases from Ξ2,2(0+) = 1

2
, to Ξ2,2(1−) = −1

2
which are clearly

the extreme values of the function. This completes the proof of Proposition 12.

Table 4.1: Upper bounds on expectations nth values of 2nd records ERn,2−µ
∆

, and upper and

lower bounds on expectations of 8th records ERn,8−µ
∆

for n = 3, . . . , 11.

n u1(n, 2) Ξn,2(u1) u1(n, 8) Ξn,8

(
u1) u2(n, 8) Ξn,8

(
u2)

3 0.53864 0.67515 0.00612 0.50151 0.49172 -0.82907
4 0.85953 1.27417 0.05275 0.51740 0.63022 -0.69988
5 0.95425 2.48879 0.12728 0.54943 0.72995 -0.63051
6 0.98408 4.81797 0.21163 0.59439 0.80242 -0.58866
7 0.99425 9.23834 0.29654 0.65089 0.85534 -0.56167
8 0.99788 17.6289 0.37741 0.71872 0.89407 -0.54356
9 0.99921 33.6037 0.45206 0.79835 0.92244 -0.53108

10 0.99971 64.1276 0.51968 0.89066 0.94324 -0.52232
11 0.99989 122.652 0.58017 0.99688 0.95848 -0.51611

Table 4.1 presents numerical values of upper bounds Ξn,k(u1) on expectations of kth
records for k = 2, 8 and n = 3, . . . , 11, and the values of lower bounds Ξn,8(u2) on expectations
of 8th records for n = 3, . . . , 11. They are accompanied by respective arguments u1 = u1(n, k)
for which Ξn,k attain their maxima, and u2 = u2(n, k) for which Ξn,k attain the minima.
The lower bounds on the expectations of second records amount to Ξn,2(1−) = −1

2
. The

arguments of the extremes allow us to recover the distributions attaining the bounds. It is
obvious that Ξn,k(u1), and Ξn,8(u2) increase as n increases from 3 to 11 for both k = 2 and
8. It is worth noting that u1(n, k), u2(n, k) do so as well.
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4.3 Differences of kth record values

Now we evaluate the expectations of differences of kth record values E(Rn,k − Rm,k), 1 ≤
m < n. By Theorem 5, the problem boils down to finding the extremes of functions

Ξm,n;k(u) = Ξn,k(u)− Ξm,k(u) =
ξn,k(u)− ξm,k(u)

2u

=
(1− u)k−1

2u

n−1∑
i=m

[
− k ln(1− u)

]i
i!

, 0 < u < 1. (4.3.1)

The local extremes of the functions (if they exist) satisfy the equalities

χm,n;k(u)

(1− u)k−2
=

χn,k(u)− χm,k(u)

(1− u)k−2
=

2u2Ξ′m,n;k(u)

(1− u)k−2

=
u[ξ′n,k(u)− ξ′m,k(u)]− [ξn,k(u)− ξm,k(u)]

(1− u)k−2

= ku
[−k ln(1− u)]m−1

(m− 1)!
+ 2u

n−2∑
i=m

[−k ln(1− u)]i

i!

− (k − 2)u
[−k ln(1− u)]n−1

(n− 1)!
−

n−1∑
i=m

[−k ln(1− u)]i

i!
= 0. (4.3.2)

Proposition 13. Under the assumptions of Proposition 12, the following statements hold
true.

(i) If k = m = 1 and n ≥ 2,

1

2
= Ξ1,n;1(0+) ≤ E(Rn,1 −R1,1)

∆
≤ Ξ1,n;1(1−) = +∞.

(ii) If k = 1 and 2 ≤ m < n, then

0 = Ξm,n;1(0+) ≤ E(Rn,1 −Rm,1)

∆
≤ Ξm,n;1(1−) = +∞.

(iii) If either k = n = 2 and m = 1, or k ≥ 3, n = 2, 3, and m = 1, then

0 = Ξ1,n;k(1−) ≤ E(Rn,k −R1,k)

∆
≤ Ξ1,n;k(0+) =

k

2
.
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(iv) If k = 2, 3, m = 1 and n ≥ k + 1, then

0 = Ξ1,n;k(1−) ≤ E(Rn,k −R1,k)

∆
≤ Ξ1,n;k(u1) >

k

2
,

where u1 ∈ (0, 1) is only one solution of equation (4.3.2).

(v) For k = 2, 3 with 2 ≤ m < n, and for k ≥ 4, with m ≥ 2 and n = m+ 1,m+ 2, we have

0 = Ξm,n;k(0+) = Ξm,n;k(1−) ≤ E(Rn,k −Rm,k)

∆
≤ Ξm,n;k(u1) > 0,

where u1 ∈ (0, 1) is the unique solution to (4.3.2).

(vi) For k ≥ 4, m = 1 and n ≥ 4, equation (4.3.2) has either no solutions in (0, 1), and
then

0 = Ξ1,n;k(1−) ≤ E(Rn,k −R1,k)

∆
≤ Ξ1,n;k(0+) =

k

2
,

or it has two solutions 0 < u1 < u2 < 1, and then

0 = Ξ1,n;k(1−) ≤ E(Rn,k −R1,k)

∆
≤ max

{
k

2
,Ξ1,n;k(u2)

}
= max {Ξ1,n;k(0+),Ξ1,n;k(u2)}.

(vii) For all k ≥ 4, m ≥ 2 and n ≥ m+ 3, either (4.3.2) has a unique solution u1 in (0, 1),
and then

0 = Ξm,n;k(0+) = Ξm,n;k(1−) ≤ E(Rn,k −Rm,k)

∆
≤ Ξm,n;k(u1) > 0,

or it has three solutions u1 < u2 < u3 there, and, in consequence,

0 = Ξm,n;k(0+) = Ξm,n;k(1−) ≤ E(Rn,k−Rm,k)

∆
≤ max{Ξm,n;k(u1),Ξm,n;k(u3)}.

The bounds for the most interesting subcase of kth record spacings Rm+1,k − Rm,k for
particular pairs of parameters k = m = 1, k = 1 < m, m = 1 < k and k,m ≥ 2 can be
immediately concluded from points (i), (ii), (iii), and (v) of Proposition 13, respectively.

Proof. The idea is similar to the previous proof. We first analyze the numerator

ξm,n;k(u) = (1− u)k−1

n−1∑
i=m

[−k ln(1− u)]i

i!
. (4.3.3)
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of (4.3.1). We immediately check that ξm,n;k(0+) = 0 for all possible m, n, and k, and
ξm,n;k(1−) = +∞ when k = 1, and 0 otherwise. Furthermore

ξ′m,n;k(u) = (1− u)k−2

[
k

[−k ln(1− u)]m−1

(m− 1)!

+
n−2∑
i=m

[−k ln(1− u)]i

i!
− (k − 1)

[−k ln(1− u)]n−1

(n− 1)!

]

If k = 1, the last term vanishes, and (4.3.3) is increasing on the unit interval. By VDP of
Lemma 2, the function is first increasing and then decreasing for all k ≥ 2.

Analysis of the second derivative

ξ′′m,n;k(u) = (1− u)k−3

[
k2 [−k ln(1− u)]m−2

(m− 2)!
− k(k − 3)

[−k ln(1− u)]m−1

(m− 1)!

+
n−3∑
i=m

2
[−kln(1−u)]i

i!
−(k2−2)

[−kln(1−u)]n−2

(n− 2)!
+(k−1)(k−2)

[−kln(1−u)]n−1

(n− 1)!

]
(4.3.4)

is more complex. The coefficient of the first term vanishes for m = 1, and is positive for
m ≥ 2. That of the second one is positive for k = 1, 2, equal to 0 for k = 3 and negative
for other k ≥ 4. If n = m + 1,m + 2, the sum is dropped, and its summands are positive
otherwise. The penultimate ingredient has a positive coefficient for k = 1, and negative one
for k ≥ 2. And that of the last one is either 0 when k = 1, 2 or positive otherwise.

Applying Lemma 2, and taking into account the fact that a smooth function has to be
concave about its local maximum, we arrive to the following conclusions. If k = 1, then (4.3.4)
is positive. Therefore (4.3.3) convexly increases from ξm,n;k(0+) = 0 to ξm,n;k(1−) = +∞.
Otherwise the function is increasing-decreasing, and vanishes at 0 and 1.

If k = 2 and m = 1, n = 2, it is concave in (0, 1). If k = 2 and either m = 1 with n ≥ 3
or n > m ≥ 2, (4.3.4) changes the sign from + to −, which means that (4.3.3) is first convex
increasing, then concave increasing and finally concave decreasing.

Suppose now that k = 3. If m = 1 and n = 2, 3, then (4.3.4) is negative-positive, and so
(4.3.3) is concave increasing, concave decreasing and convex decreasing. Otherwise, i.e., for
m = 1 with n ≥ 4, and n > m ≥ 2, the sign sequence of (4.3.4) is +−+. This implies that
(4.3.3) is consecutively convex increasing, concave increasing, concave decreasing and convex
decreasing at the right end.

Assume finally that k ≥ 4. Then for m = 1 and n = 2, 3, the second derivative (4.3.4)
is negative-positive, and therefore the original function (4.3.3) is concave increasing, concave
decreasing and convex decreasing. If m = 1 and n ≥ 4, the sign order of the combination
coefficients in (4.3.4) is − + −+. For function (4.3.4) itself, it may reduce to −+. Note
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that in the first case the maximum point of (4.3.3) can belong to either of two its concavity
regions. Consequently, we have three possible behaviors of (4.3.3). Firstly, it may be concave
increasing, concave decreasing and convex decreasing. Secondly, it may be concave increasing,
and, on the region of decrease, it may be consecutively concave, convex, and again concave
and convex. The last option is that (4.3.3) is consecutively concave, convex and concave
on the interval of increase, and concave and convex in the decrease area. If m ≥ 2 and
n = m+ 1,m+ 2, function (4.3.4) is first positive, then negative and eventually positive. It
follows that in this case (4.3.3) is convex increasing, concave increasing and decreasing, and
finally convex decreasing. Lastly, for m ≥ 2 and n ≥ m + 3, the signs of the combination
coefficients are ordered as +−+−+. Analysis similar to that of the case k, n ≥ 4 with m = 1
leads to analogous conclusions. We have again three possibilities. The functions are similar,
and the only difference is that in each case one should add an interval of convex increase at
the beginning.

Now we proceed to analyzing (4.3.1). We have

Ξm,n;k(0+) =

{
k
2
, m = 1,

0, m ≥ 2,

and

Ξm,n;k(1−) =

{
+∞, k = 1,
0, k ≥ 2.

Also, χm,n;k(0+) = 0 for all k, m, and n. This, together with Lemma 7(iiib), imply that for
k = 1, Ξm,n;1 strictly increases from 1

2
, when m = 1 and from 0, when m ≥ 2 at 0+ to +∞

for all m ≥ 1 at 1−, which gives statements (i) and (ii) of the Proposition.

The remaining cases with k ≥ 2 can be treated in much the same way. Functions ξm,n;k

are first increasing and then decreasing, and tend to 0 as the argument tends to 0 and 1.
Respective functions χm,n;k are negative at the maximum points of ξm,n;k. Functions Ξm,n;k

are also positive on (0, 1), and vanish at the right end point. Accordingly, 0 provides the
sharp lower bound for the differences of all kth records with k ≥ 2, and they are attained as
parameter u converges to 1. Note that this trivial bound is attained for m ≥ 2 if u ↘ 0 as
well.

We start with analysis of the most complex case with k ≥ 4, m ≥ 2 and n ≥ m+ 3. The
first option is that (4.3.3) is convex concave and convex which implies that the maximum
point belongs to the concavity region. We examine it together with another case that (4.3.3)
has two concavity regions, and the maximum is located in the first one. Let (0, a), (a, b) and
(b, 1) denote the intervals of convex increase, concave increase, and decrease of the function,
respectively. We have χm,n;k(0+) = 0 < χm,n;k(a), and χm,n;k(b) < 0. By Lemma 7(iiib)
and (ivc), (4.3.1) is increasing on (0, a), and increasing-decreasing on (a, b) with a maximum
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point at a < u1 < b. By Lemma 7(i), it is also decreasing on (b, 1). Therefore the extreme
values of the function are Ξm,n;k(0+) = Ξm,n;k(1−) = 0 and Ξm,n;k(u1) > 0.

Note that the analogous arguments are used for Ξm,n;k with parameters m,n, k such that
(4.3.3) is first convex increasing, than concave increasing, and ultimately decreasing, i.e. for
k = 2 with either m = 1 and n ≥ 3 or m ≥ 2, for k = 3 with either m = 1, n ≥ 4 or
n > m ≥ 2 and for k ≥ 4 with m ≥ 2 and n = m+ 1,m+ 2, which cover cases (iv) and (v) of
the Proposition. The only difference between them is that for m = 1 function (4.3.1) starts
from k

2
, and then the extreme values are Ξm,n;k(1−) = 0 and Ξm,n;k(u1) > k

2
(see Proposition

13(iv)), and otherwise Ξm,n;k(0+) = 0 is another possibility for the infimum, and then the
maximal value Ξm,n;k(u1) > 0 does not need to exceed k

2
(see Proposition 13(v)).

Let us come back to k ≥ 4, m ≥ 2 and n ≥ m+3, and consider the last case that there are
two intervals of convex increase (0, a), and (b, c), say, and two intervals of concave increase
(a, b), and (c, d). We certainly have χm,n;k(0+) = 0, χm,n;k(a) > 0, and χm,n;k(d) < 0. Lemma
7(iiib) implies that Ξm,n;k increases on (0, a). Suppose first that χm,n;k(b) ≥ 0. By Lemma
7(ivb) and (iiib), (4.3.1) is increasing on both (a, b) and (b, c). Convexity of ξm,n;k on (b, c)
implies that χ′m,n;k(u) = uξ′′m,n;k(u) > 0 for b < u < c, and so χm,n;k(c) > 0 as well. Lemma
7(ivb) assures that there is c < u1 < d such that (4.3.1) is increasing on (c, u1) and decreasing
on (u1, d). Final decrease of (4.3.1) on (d, 1) is implied by Lemma 7(i). This means that
assumption χm,n;k(b) ≥ 0 leads us to the first statement of Proposition 13(vii).

Suppose now that χm,n;k(b) < 0. Then Ξm,n;k in increasing on (0, u1) and decreasing on
(u1, b) for some a < u1 < b by Lemma 7(iiib) and (ivc). By convexity of ξm,n;k, χm,n;k is
increasing on (b, c). It may happen that either χm,n;k(c) ≤ 0 or χm,n;k(c) > 0. Suppose that
the first case holds. Then (4.3.1) decreases on (b, c), (c, d), and (d, 1) by Lemma 7(iiia), (iva)
and (i), respectively. Again, we conclude that Ξm,n;k has one local maximum in (0, 1), and
the first claim of Proposition 13(vii) holds. The last possibility is that condition χm,n;k(b) < 0
is accompanied by χm,n;k(c) > 0. Then except for the local maximum at a < u1 < b, we
have a local minimum at b < u2 < c by Lemma 7(iiic), and another local maximum at
c < u3 < d by Lemma 7(ivc). This is obviously decreasing on (d, 1) by Lemma 7(i). Note
that Ξm,n;k(u2) > 0, because Ξm,n;k is continuous and positive on (0, 1). Accordingly, the
latter statement of Proposition 13(vii) holds.

Analysis of the penultimate case with k ≥ 4, m = 1 and n ≥ 4 is similar, and we merely
outline the main steps of the proof. The only differences are that there is no interval on
convex increase in the right neighborhood of 0, and Ξ1,n;k(0+) = k

2
. We can treat together

the cases that (4.3.1) is concave on the whole interval of its increase, whereas the decrease
region contains either one or two intervals of convexity. Then Ξ1,n;k is decreasing on both
intervals where ξ1,n;k increases and decreases by Lemma 7(iva) and (i), and the first claim of
Proposition 13(vi) is valid. Note that in the same way we can treat the cases of Proposition
13(iii) and get the respective conclusion.
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Suppose now that the interval of increase (0, d), say, contains one region of convexity (b, c),
and two regions of concavity (0, b) and (c, d) (we do not use letter a for the sake of consistency
with the previous notation). We have χ1,n;k(0+) = 0, χm,n;k(b) < 0, and χm,n;k(d) < 0. If
χm,n;k(c) ≤ 0, Ξ1,n;k is decreasing on the whole unit interval by Lemma 7(iva), (iiia), again
(iva) and (i). If χ1,n;k(c) > 0, then (4.3.1) first decreases, then has a unique local minimum
at b < u1 < c, and a unique local maximum at c < u2 < d, and finally decreases by Lemma
7 (ivc), (iiic), (ivc) and (i). Again, we have Ξ1,n;k(u1) > Ξ1,n;k(1−) = 0, but we cannot settle
either of two maxima Ξ1,n;k(0+) = k

2
and Ξ1,n;k(u2) is greater. This finishes the proof of case

(vi), and of the whole Proposition.

Table 4.2: Upper bounds on expectations of kth record differences ERn,k−R1,k

∆
for k = 2, 3, 4

and n = 4, . . . , 11.

n u1(n, 2) Ξ1,n;2(u1) u1(n, 3) Ξ1,n,3(u1) u1(n, 4) Ξ1,n;4(u1)

4 0.85953 1.77417 0.24174 1.51047 0 2
5 0.95425 2.98879 0.59908 1.64906 0 2
6 0.98408 5.31797 0.78565 1.99633 0 2
7 0.99425 9.73834 0.88026 2.58914 0 2
8 0.99788 18.1289 0.93089 3.50031 0.77158 2.13923
9 0.99921 34.1037 0.95925 4.85335 0.84482 2.54721

10 0.99970 64.6276 0.97565 6.83793 0.89233 3.11471
11 0.99989 123.152 0.98532 9.73634 0.92438 3.87706

Table 4.2 contains numerical values of upper bounds Ξ1,n;k(u1) on the expectations of the
differences between the nth and first values of kth records together with respective arguments
u1 = u1(n, k) for which Ξ1,n;k attains its maximum. We examine k = 2, 3, 4 and n = 4, . . . , 11.
For calculating the bounds in cases k = 2, 3, we applied Proposition 13(iv). For k = 4,
Proposition 13(vi) was used. Then the first subcase of no local extremes appeared for n =
4, . . . , 7, and the single local maxima of Ξ1,n;4 were used for n = 8, . . . , 11. As one can
expect, the bounds decrease in rows, and increase in columns. The same tendency concerns
the arguments providing the maxima. However, it is quite surprising that as n increases, the
points attaining the fast increasing maxima approach very close point 1, where the global
infima, equal to 0, are attained.

Table 4.3 presents numerical values of upper bounds Ξ2,n;k(ui) on the expectations of dif-

ferences of nth and second values of kth records ERn,k−R2,k

∆
with the arguments ui = ui(n, k),

i = 1 or 3, providing the maxima of respective functions Ξ2,n;k. We consider parameters
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Table 4.3: Upper bounds on on expectations of kth record differences ERn,k−R2,k

∆
for k = 2, 3

with n = 3, . . . , 11, and for k = 10 with n = 13, . . . , 21.

n u1(n, 2) Ξ2,n;2(u1) u1(n, 3) Ξ2,n,3(u1) n ui(n, 10) Ξ2,n;10(ui)

3 0.79681 0.64761 0.47471 0.54207 13 0.26010 2.08544
4 0.90626 1.49438 0.60992 0.96579 14 0.26018 2.08548
5 0.96101 2.84937 0.72476 1.38507 15 0.26021 2.08549
6 0.98491 5.25240 0.81886 1.87945 16 0.26021 2.08549
7 0.99434 9.70871 0.88772 2.54006 17 0.69271 2.13547
8 0.99789 18.1159 0.93242 3.48013 18 0.72874 2.24568
9 0.99921 34.0981 0.95956 4.84509 19 0.75943 2.37671

10 0.99971 64.6252 0.97571 6.83455 20 0.78605 2.52859
11 0.99989 123.151 0.98533 9.73495 21 0.80936 2.70201

k = 2, 3 with n = 3, . . . , 11 and k = 10 with n = 13, . . . , 21. Conclusions of Proposition 13
(v) and (vii) were used for k = 2, 3 and k = 10 respectively. In the latter case, for n = 13, 14,
function (4.3.1) has a unique maximum in (0, 1), and we use the first statement of Proposi-
tion 13(vii). Otherwise it has two local maxima and a minimum between them. However, for
n = 15, 16 the global maximum is attained in the first zero of (4.3.2), and for the remaining
n = 17, . . . , 21, the last zero provides the global maximum. This explains a significant jump
from 0.26021 to 0.69271 in the penultimate column of the Table. Behaviour of the bounds
and parameters describing their attainability conditions is like for Table 4.2.

Table 4.4 presents upper bounds Ξm,m+1;k(u1) on expectations of kth record spacings
Rm+1,k −Rm,k for k = 2, 3, 4 and m = 2, . . . , 11, and respective arguments u1 = u1(m, k) for
which Ξm,m+1;k attains its maximum. They were established by means of Proposition 13(v).
We observe that except for k = 2, the bounds first decrease and then increase as m increases.
The lower bounds for the differences of records presented in Tables 4.2–4.4 amount to 0.
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Table 4.4: Upper bounds on expectations of kth record spacings ERm+1,k−Rm,k

∆
for k = 2, 3, 4

and m = 2, . . . , 11.

m u1(m, 2) Ξm,m+1;2(u1) u1(m, 3) Ξm,m+1;3

(
u1) u1(m, 4) Ξm,m+1;4

(
u1)

2 0.79681 0.64761 0.47471 0.54208 0.32620 0.58475
3 0.94048 0.94762 0.71317 0.50558 0.54156 0.45015
4 0.98017 1.59328 0.83871 0.58006 0.68538 0.43335
5 0.99302 2.82685 0.90731 0.72982 0.78244 0.46358
6 0.99748 5.15281 0.94588 0.96486 0.84858 0.52656
7 0.99908 9.54491 0.96804 1.31373 0.89404 0.62105
8 0.99966 17.8731 0.98097 1.82275 0.92550 0.75117
9 0.99988 33.7336 0.98860 2.56139 0.94743 0.92468

10 0.99995 64.0592 0.99315 3.63192 0.96278 1.15284
11 0.99998 122.245 0.99587 5.18426 0.97358 1.45096
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Chapter 5

Bounds on the variances of linear
combinations of kth records

Let X1, X2, . . . be i.i.d. random variables with common continuous distribution function F .
For the sequence, we define respective kth record values R1,k, R2,k, . . .. Let c = (c1, . . . , cn) ∈
Rn be an arbitrary nonzero vector. Our purpose is to provide bounds for the ratios of
variances Var(

∑n
i=1 ciRi,k)/Var X1 for all possible continuous baseline distribution functions

F for which the above variances are finite. Note that finiteness of Var X1 implies the same for
Var Rn,k, n ∈ N, when k ≥ 2. For the classic records with k = 1, condition Var X1 <∞ does
to suffice for Var Rn,1 <∞, n = 2, 3, . . .. Throughout the chapter, writing Var Y we tacitly
assume that this is finite. Below we present upper bounds on variances of arbitrary linear
combinations of kth records, and describe conditions of their sharpness. We also determine
conditions which imply that respective lower bounds vanish. We first mention sharp lower
and upper bounds for single kth record values determined by Klimczak and Rychlik (2004).
Then we thoroughly study the case of kth record spacings Rm+1,k −Rm,k.

The literature concerning evaluations of variances of records is very scanty. The first paper
devoted to evaluation of variances of records was due to Klimczak and Rychlik (2004) who
determined tight lower and upper bounds on variances of single kth record values Var Rn,k

measured in the population variance units Var X1. These results were specified by Jasiński
(2016) under some restrictions on parameters n and k.
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5.1 Linear combinations of kth record values

For given positive integers n and k, and for a fixed vector c = (c1, . . . , cn) ∈ Rn,
∑n

i=1 |ci| > 0,
we define function

Φc,k(u, v) =
(1− v)k−1

u

{[
n∑
j=1

cj − (1− u)k
n−1∑
i=0

(
n∑

j=i+1

cj

)
[−k ln(1− u)]i

i!

]

×
n−1∑
i=0

(
n∑

j=i+1

cj

)
[−k ln(1− v)]i

i!

−
∑

1≤i<j≤n

cicj

j−i−1∑
p=0

p∑
q=0

(−1)q[−k ln(1− u)]i+q[−k ln(1− v)]p−q

(i− 1)!q!(p− q)!(q + i)

}
(5.1.1)

acting on the triangle 0 < u ≤ v < 1. For brevity, parameter n is suppressed in the notation.
The diagonal version Ψc,k(u) of Φc,k(u, u) for 0 < v = u < 1 has much simpler form

Ψc,k(u) =
(1− u)k−1

u


n−1∑
i=0

(
n∑

j=i+1

cj

)2
[−k ln(1− u)]i

i!

− (1− u)k

[
n−1∑
i=0

(
n∑

j=i+1

cj

)
[−k ln(1− u)]i

i!

]2
 , (5.1.2)

because due to the identity

(p− 1)!(q − 1)!

(p+ q − 1)!
=

∫ 1

0

up−1(1− u)q−1du

=

q−1∑
r=0

(
q − 1

r

)
(−1)r

∫ 1

0

up+r−1du =

q−1∑
r=0

(q − 1)!(−1)r

r!(q − 1− r)!(p+ r)
,
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the last line of (5.1.1) for u = v can be rewritten as

n∑
j=2

cj

j−1∑
i=1

ci

j−i−1∑
p=0

[−k ln(1− u)]i+p

(i− 1)!

p∑
q=0

(−1)q

q!(p− q)!(q + i)

=
n∑
j=2

cj

j−1∑
i=1

ci

j−i−1∑
p=0

[−k ln(1− u)]i+p

(i+ p)!

=
n∑
j=2

cj

j−1∑
i=1

ci

j−1∑
p=i

[−k ln(1− u)]p

p!

=
n∑
j=2

cj

j−1∑
p=1

(
p∑
i=1

ci

)
[−k ln(1− u)]p

p!

=
n−1∑
p=1

(
n∑

j=p+1

cj

)(
p∑
i=1

ci

)
[−k ln(1− u)]p

p!
.

Theorem 6. Suppose that X1, X2, . . . is a sequence of i.i.d. random variables with a common
continuous distribution function F , say, such that EX2

1 and ER2
n,k are finite for fixed n, k ∈ N.

Then for any non-zero c ∈ Rn, we have

Var(
∑n

i=1 ciRi,k)

Var X1

≤ sup
0<u≤v<1

Φc,k(u, v). (5.1.3)

Moreover, if
sup

0<u≤v<1
Φc,k(u, v) = sup

0<u<1
Ψc,k(u), (5.1.4)

then bound (5.1.3) is sharp. Precisely, we have the following.
(i) If sup0<u<1 Ψc,k(u) = Ψc,k(u0) for some 0 < u0 < 1, then the upper bound in (5.1.3) is
attained in the limit by the sequence of parent distribution functions Fm = u0Fm,a + (1 −
u0)Fm,b, m = 1, 2, . . ., where Fm,a denote the distribution function of the uniform random
variable on the interval

[
a− 1

m
, a
]
, and a < b are arbitrary.

(ii) If sup0<u<1 Ψc,k(u) = limu↘0 Ψc,k(u), then the equality in (5.1.3) is attained in the limit
by any sequence of distribution functions Fm = umFm,a + (1 − um)Fm,b as m → ∞ and
um ↘ 0, whereas a < b.
(iii) If sup0<u<1 Ψc,k(u) = limu↗1 Ψc,k(u), then the upper bound in (5.1.3) is attained in the
limit by any sequence of distribution functions Fm = umFm,a + (1− um)Fm,b as m→∞ and
um ↗ 1, with a < b.

If k ≥ 2, then assumption ER2
n,k <∞ follows from finiteness of EX2

1 .
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Proof. Assume that X1, X2, . . . are i.i.d. with distribution function F and finite variance.
Noting that the supports of record values are contained in the supports of the original vari-
ables, and using (1.3.2), (1.3.3) and (1.3.6), we conclude

Var

(
n∑
i=1

ciRi,k

)
=

n∑
i=1

c2
iVar (Ri,k) + 2

∑
1≤i<j≤n

cicjCov(Ri,k, Rj,k)

= 2
n∑
i=1

c2
i

∫∫
0<F (x)≤F (y)<1

[
FU
i,k

(
F (x)

)
− FU

i,k

(
F (x)

)
FU
i,k

(
F (y)

)]
dxdy

+ 2
∑

1≤i<j≤n

cicj

∫∫
0<F (x),F (y)<1

[
FU
i,j,k

(
F (x), F (y)

)
− FU

i,k

(
F (x)

)
FU
j,k

(
F (y)

)]
dxdy

= 2

∫∫
0<F (x)≤F (y)<1

{
n∑
i=1

c2
iF

U
i,k

(
F (x)

)[
1− FU

i,k

(
F (y)

)]
+

∑
1≤i<j≤n

cicj

{
FU
i,k

(
F (x)

)[
1− FU

j,k

(
F (y)

)]
+ FU

j,k

(
F (x)

)[
1− FU

i,k

(
F (y)

)]
− [1− F (y)]k

×
j−i−1∑
p=0

p∑
q=0

(−1)q
[
− k ln

(
1− F (x)

)]i+q[− k ln
(
1− F (y)

)]p−q
(i− 1)!q!(p− q)!(i+ q)

}}
dxdy

= 2

∫∫
0<F (x)≤F (y)<1

{[
n∑
i=1

ciF
U
i,k

(
F (x)

)] [ n∑
j=1

cj
[
1− FU

j,k

(
F (y)

)]]
−

∑
1≤i<j≤n

cicj

× [1− F (y)]k
j−i−1∑
p=0

p∑
q=0

(−1)q
[
− k ln

(
1− F (x)

)]i+q[− k ln
(
1− F (y)

)]p−q
(i− 1)!q!(p− q)!(i+ q)

}
dxdy.

Since

n∑
i=1

ci
[
1− FU

i,k

(
F (x)

)]
= [1− F (x)]k

n−1∑
i=0

(
n∑

j=i+1

cj

) [
− k ln

(
1− F (x)

)]i
i!

we have

Var

(
n∑
i=1

ciRi,k

)
= 2

∫∫
0<F (x)≤F (y)<1

Φc,k

(
F (x), F (y)

)
F (x)[1− F (y)]dxdy

≤ sup
0<u≤v<1

Φc,k(u, v)Var X1. (5.1.5)
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Suppose now that (5.1.4) holds.

(i) Assume first that the supremum of Ψc,k(u) is attained at some 0 < u0 < 1. If u0 is the
unique value of F (x), different from 0 and 1, then equality holds in (5.1.5). The condition is
satisfied by the distribution functions

F (x) =


0, x < a,
u0, a ≤ x < b,
1, x > b

for arbitrary a < b. Mixtures of uniform distribution functions Fm(x) = u0Fm,a(x) + (1 −
u0)Fm,b(x) tend to F (x) for all x ∈ R, and function Φc,k(u, v)u(1−v) is continuous. Therefore,
as m→∞, we get

Varm (
∑n

i=1 ciRi,k)

VarmX1

=
2
∫∫

a− 1
m
<x<y<b

Φc,k(Fm(x), Fm(y))Fm(x)[1− Fm(y)]dxdy

2
∫∫

a− 1
m
<x<y<b

Fm(x)[1− Fm(y)]dxdy

→
2
∫∫

a<x<y<b
Φc,k(F (x), F (y))F (x)[1− F (y)]dxdy

2
∫∫

a<x<y<b
F (x)[1− F (y)]dxdy

= Ψc,k(u0) = sup
0<u<1

Ψc,k(u).

(ii) If sup0<u<1 Ψc,k(u) = limu↘0 Ψc,k(u), then by the previous statement and continuity
of Ψc,k, for the sequence of mixtures defined in Theorem 6 (ii) yields

Varm (
∑n

i=1 ciRi,k)

VarmX1

→ lim
u↘0

Ψc,k(u).

The proof of statement (iii) is similar.

Theorem 7. Under assumptions of Theorem 6, if either c1 = 0 or k ≥ 2, then the trivial
bound

Var(
∑n

i=1 ciRi,k)

Var X1

≥ 0

is optimal. If the former (latter) condition holds, then the zero bound is attained for the
sequence of baseline distributions described in Theorem 6(ii) (Theorem 6(iii), respectively).

Proof. We first calculate the right limit of (5.1.2) at 0. Denote the respective expression in the
curly brackets by χc,k(u). Since factor (1− u)k−1 is immaterial here, and limu↘0 χc,k(u) = 0,
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with use the l’Hospital rule we obtain

lim
u↘0

Ψc,k(u) = lim
u↘0

χ′c,k(u) = k

(
n∑
j=2

cj

)2

+ k

(
n∑
j=1

cj

)2

− 2k

(
n∑
j=1

cj

)(
n∑
j=2

cj

)

= k

(
n∑
j=1

cj −
n∑
j=2

cj

)2

= kc2
1.

Hence c1 = 0 implies that limu↘0 Ψc,k(u) = 0, and using the sequence of baseline distribu-
tions of Theorem 6(ii), we attain zero for the variance ratios in the limit. If k ≥ 2, then
limu↗1 Ψc,k(u) = 0, because each expression (1−u)p[−k ln(1−u)]q for p ≥ 1 and q ≥ 0 tends
to 0 as u approaches 1. If k = 1, then Ψc,k tends to +∞ at 1, because it behaves asymptoti-

cally as a combination of functions [−k ln(1− u)]i, i = 0, . . . , n− 1, and the coefficient c2n
(n−1)!

of the fastest increasing term [−k ln(1 − u)]n−1 is clearly positive. In conclusion, applying
construction of Theorem 6(iii) for k ≥ 2 we obtain zero limit.

5.2 Single kth record values

In the case of single nth value of kth records with c = c(n) = (0, . . . , 0, 1), function (5.1.1)
simplifies to

Φc(n),k(u, v) =
1− (1− u)k

∑n−1
i=0

[−k ln(1−u)]i

i!

u
(1− v)k−1

n−1∑
i=0

[−k ln(1− v)]i

i!
.

It can be shown that for every n, k ∈ N and c = c(n), (5.1.4) holds which means that
sup0<u<1 Ψc(n),k(u) provide the sharp upper bounds. For n = 1, we have R1,k = X1:k, and
results of Section 3.2 apply. When k = 1 and n ≥ 2, we have

sup
0<u<1

Ψc(n),k(u) = lim
u↗1

Ψc(n),k(u) = +∞,

and respective attainability conditions are formulated in Theorem 6(iii). Klimczak and Rych-
lik (2004) showed that for any n, k ≥ 2 function Ψc(n),k is maximized at some inner point
u0 = u0(n, k) of open interval (0, 1). In consequence, the bounds are attained by the approxi-
mations of two-point distributions described in Theorem 6(i). Moreover, under the restriction
2 ≤ k ≤ max

{
2, n n+4

3n+4

}
, Jasiński (2016) proved that u0 is the unique zero of Ψ′c(n),k in (0, 1).

Since

lim
u↘0

Ψn,k(u) = 0, n ≥ 2,

lim
u↗1

Ψn,k(u) = 0, k ≥ 2,
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the trivial bound
Var(

∑n
i=1 ciRi,k)

Var X1

≥ 0

is sharp for all k and n except for n = k = 1. For n ≥ 2 and k ≥ 2, equality conditions can
be found in Theorem 6(ii) and (iii), respectively.

5.3 kth record spacings

In this Section, we thoroughly analyze variances of kth record spacings. To simplify the
notation, we write Φc(m+1)−c(m),k and Ψc(m+1)−c(m),k as Φm,k and Ψm,k, respectively. The
former has the representation

Φm,k(u, v) =
[−k ln(1− u)]m(1− v)k−1

um!

[
1− (1− u)k[−k ln(1− v)]m

m!

]
, (5.3.1)

and the latter satisfies Ψm,k(u) = Φm,k(u, u).

Proposition 14. Let X1, X2, . . . be i.i.d. continuously distributed, and assume that EX2
1 <

∞ and ER2
m+1,k <∞. Then

Var(Rm+1,k −Rm,k)

Var X1

≤ sup
0<u<1

Ψm,k(u), (5.3.2)

and the bound is sharp. In particular, the following yields.
(i) If k = 1 and m ≥ 1, then

Var(Rm+1,1 −Rm,1)

Var X1

≤ lim
u↗1

Ψm,1(u) = +∞, (5.3.3)

and this upper bound is attained by the sequence of baseline distributions described in Theorem
6(iii).
(ii) If m = 1 and k ≥ 2, then

Var(R2,k −R1,k)

Var X1

≤ lim
u↘0

Ψ1,k(u) = k,

and the bound is attained by the sequence of distributions described in Theorem 6(ii).
(iii) If either k = 2 ≤ m or k ≥ 3 with 2 ≤ m ≤ 2

3
k, then

Var(Rm+1,k −Rm,k)

Var X1

≤ Ψm,k(u0),
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where u0 = u0(m, k) is the unique solution to Ψ′m,k(u) = 0, and the equality is attained by
the sequence of parent distributions described in Theorem 6(i).
(iv) If finally k ≥ 3 with m > 2

3
k, then

Var(Rm+1,k −Rm,k)

Var X1

≤ Ψm,k(u0),

where 0 < u0 < 1 is the global maximum point of Ψm,k over (0, 1), and attainability conditions
are presented in Theorem 6(i).

Remark 9. Relation (5.3.3) is not surprising in view of the fact that one can construct
parent distributions such that Var Rm,1 < ∞ = Var Rm+1,1 for every m ∈ N (cf Nagaraja,
1978, and Klimczak and Rychlik, 2004). It is surprising, though, that that arbitrary large
values of variance ratio are possible for so simple parent distributions with very restricted
supports, defined in Theorem 6.

Remark 10. In the last case of Proposition 14 we can restrict the number of local maxima
of Ψm,k with use of the variation diminishing property of power series of Lemma 4. We
can check that the derivative Ψ′m,k(u), 0 < u < 1, has for arbitrary k,m ≥ 3 at most 5
zeros, and, in consequence, Ψm,k(u) itself has 3 local maxima at most. Moreover, under some
extra conditions we are able to restrict the number of local maxima to two. We provide the
respective arguments just below the proof of Proposition 14.

On the other hand, many numerical examples show that for various k,m ≥ 3 function
Ψm,k(u) is merely increasing-decreasing in (0, 1), and has a single maximum there. However,
we are not able to prove the claim formally.

In the proof of Proposition 14, we use Lemma 7, and Lemma 9 below which follows from
the following one.

Lemma 8. Let

fn,M(x) = ex −Mxn

n!

be defined on the non-negative half-axis for fixed real M and non-negative integer n. Then
f0,M(0) = 1 − M and fn,M(0) = 1 for n ∈ N. Also, limx↗∞ fn,M(x) = +∞ for every
n = 0, 1, . . . and M ∈ R. Moreover, we have the following.
(i) Function f0,M is strictly increasing everywhere.
(ii) If M ≤ 1, then f1,M also increases, and otherwise there exists x0 > 0 such that f1,M

decreases on (0, x0) and increases on (x0,∞).
(iii) Let n ≥ 2. If either M ≤ 1 or M > 1 and minx>0 fn−1,M(x) ≥ 0, then fn,M is
increasing. If M > 1 and minx>0 fn−1,M(x) < 0, then there exist 0 < x1 < x2 <∞ such that
fn,M increases on (0, x1), decreases on (x1, x2), and finally increases on (x2,∞).

82



Proof. Calculating the left- and right-end values is immediate. Also, claim (i) is trivial since
f ′0,M(x) = ex > 0, x > 0. Note that f ′n+1,M = fn,M for all n ∈ N.
(ii) We have f ′1,M(x) = ex − M . If M ≤ 1, then f1,M is strictly increasing and positive.
Otherwise, it is decreasing on (0, x0) with x0 = x0(1) = lnM , and increasing elsewhere.
(iii) Suppose first that n = 2. If M ≤ 1, then f ′2,M = f1,M > 0, and, due to (ii), f2,M is
increasing from 1 to ∞. If M > 1 and minx>0 f1,M(x) = f1,M(lnM) ≥ 0, then by the latter
statement of (ii), f2,M is increasing as well. For M > 1 with f1,M(lnM) < 0, by the same
argument, there exist 0 < x1 = x1(2) < x0(1) < x2 = x2(2) such that f ′2,M(xi) = f1,M(xi) =
0, i = 1, 2, and, consequently, f2,M is increasing on (0, x1) ∪ (x2,∞), and decreasing on
(x1, x2). It means that conditions of (iii) are satisfied for n = 2.

Assume now that (iii) holds for some n ≥ 2. We conclude the same for n+ 1. If M ≤ 1,
then f ′n+1,M(x) = fn,M(x) increases on R+ from 1 to ∞, and so does fn+1,M . If M > 1
and minx>0 fn,M(x) = fn,M(x0(n)) ≥ 0, then f ′n+1,M(x) is positive (except for possibly at
x0(n) when fn,M(x0(n)) = 0), and so fn+1,M is increasing function. If finally M > 1 and
fn,M(x0(n)) < 0, then there are 0 < x1 = x1(n + 1) < x0(n) < x2 = x2(n + 1) < ∞
such that fn+1,m is increasing, decreasing, and increasing in (0, x1), (x1, x2), and (x2,∞),
respectively.

Lemma 9. Let f and g be polynomials, r(x) = g(x)
f(x)

, n ∈ N, and

h(x) = f(x)ex − g(x)
xn

n!
, x ≥ 0.

(i) If limx→∞ f(x) = ∞, xf = max
{
x ∈ R : f(x) = 0

}
≥ n, g(xf ) > 0, and r′(x) < 0 for

x > xf , then there exists xh > xf such that h is negative on (xf , xh), and positive on (xh,∞).
Moreover, function h(x) is increasing on (xh,∞) under additional assumption that

f ′(x) > 0 for x > xh.
(ii) If f(0) > 0, 0 < xf = min

{
x ∈ R : f(x) = 0

}
≤ n, g(xf ) > 0, and r′(x) > 0 for

0 < x < xf , then there exists 0 < xh < xf such that h is positive on (0, xh), and negative on
(xh, xf ).

Proof. (i)Note that h(xf ) = −g(xf )
xnf
n!
< 0 and limx→∞ h(x) = ∞. Hence the function has

some zeros in (xf ,∞). Let xh denote the smallest of them. Obviously, h is negative on
(xf , xh).

Define now ϕ(x) = h(x)
f(x)

= ex − r(x)x
n

n!
, x > xf , and ψ(x) = ex −M xn

n!
with M = r(xh).

Note that f(xh) > 0, and ψ(xh) = ϕ(xh) = h(xh)
f(xh)

= 0. By assumption, r(x) < r(xh) = M ,
x > xh > xf , and so

ϕ(x) = ex − r(x)
xn

n!
> ex −Mxn

n!
= ψ(x), x > xh.
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Observe further that

ψ′(xh) = exh −M xn−1
h

(n− 1)!
> 0 = ψ(xh) = exh −Mxnh

n!

iff M < M xh
n

. If M ≤ 1, then by Lemma 8 (ii) and (iii) ψ increases from 1 at 0 to ∞ at ∞,
which contradicts ψ(xh) = 0. Therefore condition ψ′(xh) > 0 is equivalent with xh > n which
is true due to inequalities n ≤ xf < xh. By Lemma 8 again, relations 0 = ψ(xh) < ψ′(xh)

imply that ψ(x) > 0 for all x > xh, and so is ϕ(x) = h(x)
f(x)

. By positivity of f on (xf ,∞),

h(x) > 0 for x > xh as well.
Furthermore, note that for x > xh yields

ϕ′(x) = ex − r′(x)
xn

n!
− r(x)

xn−1

(n− 1)!
> ex − r(x)

xn−1

(n− 1)!

> ex − r(xh)
xn−1

(n− 1)!
= ψ′(x) > 0,

and consequently, under condition f ′(x) > 0, x > xh, we have h′(x) = f ′(x)ϕ(x)+f(x)ϕ′(x) >
0, x > xh, as well.

(ii) The proof is based on similar ideas. Since h(xf ) = −g(xf )
xnf
n!
< 0 < f(0) = h(0), and h

is continuous, it has some zeros in (0, xf ). Let xh be the greatest of them. Clearly, h < 0 on
(xh, xf ). Functions ϕ(x) = ex − r(x)x

n

n!
and ψ(x) = ex −M xn

n!
with M = r(xh) vanish at xh.

Inequality ϕ(x) > ψ(x), 0 < x < xh, follows from condition r′(x) > 0, 0 < x < xf . Relation
M ≤ 1 implying positive increase of ψ on R+ contradicts ψ(xh) = 0. When M > 1, conditions
xh < xf ≤ n imply ψ′(xh) < ψ(xh) = 0. Due to Lemma 8 (ii) and (iii), and the last relations,

xh is the first zero of ψ, and this is positive on (0, xh). Therefore so is ϕ(x) = h(x)
f(x)

> ψ(x)

there. Positivity of h on (0, xh) follows from positivity of f in (0, xf ) ⊃ (0, xh).

Proof of Proposition 14. We start with proving that

Φm,k(u, v) > Φm,k(u, u) = Ψm,k(u), u < v < 1,

for every fixed 0 < u < 1. The two-variable function, defined in (5.3.1), is represented as the
product of two factors. The first one is obviously non-increasing in v (constant for k = 1 and
decreasing otherwise), and positive for all u < v < 1. The latter is also decreasing. In order
to show its positivity, we note that

1− (1− u)k
[−k ln(1− u)]m

m!
> 1− (1− u)k

m∑
i=0

[−k ln(1− u)]i

i!
= FU

m+1,k(u) > 0,
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where FU
m+1,k denotes the distribution function of the (m + 1)st value of the kth record

based on i.i.d. variables with the standard uniform distribution. The product of positive
non-increasing and positive decreasing functions is positive decreasing. It follows that

sup
0<u≤v<1

Φm,k(u, v) = sup
0<u<1

Ψm,k(u).

By Theorem 6, the upper bound (5.3.2) is sharp. In order to determine its attainability
conditions, it suffices to find the arguments for which functions Ψm,k attain their suprema.

(i) Assume first that k = 1. Then

Ψm,1(u) =
[− ln(1− u)]m

um!

[
1− (1− u)[− ln(1− u)]m

m!

]
.

As u ↗ 1, the first term increases to +∞, whereas the other one tends to 1. Therefore the
upper bound trivially equals to +∞. Since

sup
0<u<1

Ψm,k(u) = lim
u↗1

Ψm,k(u),

the attainability conditions are presented in Theorem 6(iii).
(ii) We start with analyzing case m = 1 with k = 2. Then

Ψ1,2(u) =
−2(1− u) ln(1− u)]

u

[
1 + 2(1− u)2 ln(1− u)

]
= f(u)g(u), 0 < u < 1,

say. We have f ′(u) = 2
u2
h(u) with h(u) = u+ln(1−u). Since h(0) = 0 and h′(u) = − u

1−u < 0,
derivative f ′ is decreasing and negative. Function f is decreasing as well, and positive with
limu↘0 f(u) = 2 and f(1) = 0. The latter function has derivative g′(u) = 2(1− u)[−2 ln(1−
u)− 1], and so is decreasing in (0, 1− e−1/2) and increasing in (1− e−1/2, 1). Its maximums
are g(0) = g(1) = 1. Therefore

sup
0<u<1

Ψ1,2(u) = lim
u↘0

Ψ1,2(u) = lim
u↘0

f(u)g(u) = 2.

This proves (ii) for k = 2.
For the other cases m = 1 with k ≥ 3, and m ≥ 2 with k ≥ 2, we first analyze functions

ψm,k(u) = uΨm,k(u). Then we obviously have limu↘0 ψm,k(u) = limu↗1 ψm,k(u) = 0. We
first show that each ψm,k is first increasing and then decreasing in (0, 1). We write down the
derivative

ψ′m,k(u) = (1− u)2k−2

[
− k ln(1− u)

]m−1

m!

{
mk − (k − 1)

[
− k ln(1− u)

]
(1− u)k

−
[−k ln(1− u)]m

[
2mk − (2k − 1)[−k ln(1− u)]

]
m!

}
. (5.3.4)
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Consider the strictly increasing variable transformation x : (0, 1) 7→ R+ defined as x(u) =
−k ln(1− u), with the inverse u(x) = 1− exp(−x/k). We have

χ1,m,k(x)=ψ′m,k(u(x))=−x
m−1

m!
exp

(
−2(k−1)x

k

)[
f1,m,k(x)ex−g1,m,k(x)

xm

m!

]
, (5.3.5)

where

f1,m,k(x) = (k − 1)x− km, (5.3.6)

g1,m,k(x) = (2k − 1)x− 2km, x > 0, (5.3.7)

We denote the expression in the brackets of (5.3.5) by h1,m,k(x). We now prove that function
h1,m,k(x), x > 0, is first negative and then positive. This would imply that (5.3.5) and (5.3.4)
are first positive, and ultimately negative in their domains, as desired. Functions (5.3.6) and
(5.3.7) are initially negative and then positive, and their zeros are xf (m, k) = k

k−1
m and

xg(m, k) = 2k
2k−1

m, respectively. Notice that m < xg(m, k) < xf (m, k). We first show that
h1,m,k is negative in (0, xg(m, k)). To this end, we use the relations

f1,m,k(x)ex < f1,m,k(x)
xm−1

(m− 1)!

[
1 +

x

m

]
< g1,m,k(x)

xm

m!
.

The former is trivial by negativity of f1,m,k on (0, xg(m, k)), and the latter is equivalent
to inequality kx2 − (2k − 1)m + km2 > 0. This is true for all k,m ∈ N and x ∈ R,
because its discriminant ∆ = −m2(4k − 1) is negative then. Function h1,m,k is negative in
(xg(m, k), xf (m, k)) as well, because both its summands are negative there. Finally, since

d

dx

g1,m,k(x)

f1,m,k(x)
=

−km
[(k − 1)x− km]2

< 0,

and (5.3.6) and (5.3.7) satisfy all other assumptions of Lemma 9(i), we deduce that h1,m,k

is first negative, and then positive in (xf (m, k),+∞). This completes the proof that ψm,k is
first increasing and then decreasing in (0, 1).

(ii) cont. Suppose now that m = 1 and k ≥ 3. Then

ψ′′1,k(u) = (1− u)2k−3{−k(2k−3)(1− u)−k + (k−1)(k−2)[−k ln(1− u)](1− u)−k

− 2k2 + 2k(4k − 3)[−k ln(1− u)]− (2k − 1)(2k − 2)[−k ln(1− u)]2}.

Using again change of variable x(u) = −k ln(1− u), we obtain

χ2,1,k(x) = exp

(
−(2k − 3)x

k

)
h2,1,k(x)

= exp

(
−(2k − 3)x

k

)
[exf2,1,k(x)− g2,m,k(x)x− 2k2]
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with

f2,1,k(x) = (k − 1)(k − 2)x− k(2k − 3), (5.3.8)

g2,1,k(x) = (2k − 1)(2k − 2)x− 2k(4k − 3).

Function (5.3.8) has a single zero at xf (1, k) = k(2k−3)
(k−1)(k−2)

. We intend to prove that h2,1,k is

negative in (0, xf (1, k)), and changes the sign once in (xf (1, k),∞) from minus to plus. To
verify the first claim we notice that

h2,1,k(x) < Ak(x) =

(
1 + x+

x2

2

)
f2,1,k(x)− g2,1,k(x)x− 2k2

for x ∈ (0, xf (1, k)), because f2,1,k is negative there. We claim that the cubic function

Ak(x) =
1

2
(k − 1)(k − 2)x3 − k

(
4k − 9

2

)
x2 + (7k2 − 6k + 2)x− (4k + 3)k

= ax3 + bx2 + cx+ d,

is negative for 0 < x < xf (1, k). Since Ak(xf (1, k)) = −2k2(k2+2k−5)
(k−2)2

is negative for all k ≥ 3,

it suffices to show that the discriminant D = q2 + p3 of Ak is positive, where 3p = 3ac−b2
3a2

,

2q = 2b3

27a3
− bc

3a2
+ d

a
. Elementary calculations show that D = g(k)

27(k−1)4(k−2)4
, where

g(k) = 104k8 + 120k7 − 1584k6 + 132k5 + 6353k4 − 9216k3 + 5296k2 − 1344k + 128.

We also introduce g1(k) = g(k + 1)− g(k) and g2(k) = g1(k + 1)− g1(k) which amount to

g1(k) = 832k7 + 3752k6 − 1160k5 − 11620k4 + 5076k3 − 6538k2 + 1184k − 139,

g2(k) = 5824k6 + 39984k5 + 79600k4 + 46080k3 + 7660k2 − 21792k − 8474,

respectively. The derivative of g2 is increasing for positive k, because it is a positive com-
bination of power functions and a negative constant. Due to g2′(3) = 34550040, it is also
positive for k ≥ 3. Since all g2(3) = 21648658, g1(3) = 3413315, and g(3) = 131645 are
positive, we successively conclude that g2, g1, and finally g itself are positive for all k ≥ 3.
This is the desired statement.

We now check that function

h̃2,1,k(x) = h2,1,k(x) + 2k2 = exf2,1,k(x)− g2,1,k(x)x

fulfills conditions of Lemma 9(i). Indeed, f2,1,k(x) ↗ ∞ as x ↗ ∞, xf (1, k) = k(2k−3)
(k−1)(k−2)

>

n = 1, g2,1,k

(
k(2k−3)

(k−1)(k−2)

)
= 6k(k−1)

k−2
> 0, and

d

dx

g2,1,k(x)

f2,1,k(x)
=

−6k(k − 1)2

[(k − 1)(k − 2)x− k(2k − 3)]2
< 0,
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when k ≥ 3. So there exists x̃h̃(1, k) > xf (1, k) such that h̃2,1,k(x) is negative for xf (1, k) <
x < x̃h̃(1, k) and positive for x > x̃h̃(1, k), and it tends to +∞ as x increases to +∞.
Since f ′2,1,k(x) > 0, by the last claim of Lemma 9(i), h̃2,1,k is also increasing for x > x̃h̃(1, k).

Accordingly, function h2,1,k = h̃2,1,k−2k2 which is negative on (xf (1, k), x̃h̃(1, k)), is increasing
to ∞ on (x̃h̃(1, k),∞) as well. Hence it is negative on (xf (1, k), xh(1, k)) and positive on
(xh(1, k),∞) for some xh(1, k) > x̃h̃(1, k). This implies that ψ′′1,k is first negative and then
positive on (0, 1).

Recall that ψ′1,k is consecutively positive and negative. Since every smooth function is
concave around its local maximum, ψ1,k that starts from 0 at 0 is first concave increasing,
then concave decreasing, and finally convex decreasing and vanishes at the right-end point 1.
By Lemma 7(iv)(a) and (i), respectively, Ψ1,k decreases on whole (0, 1). This ends the proof
of Proposition 14(ii).

(iii) For m ≥ 2 and k ≥ 2, the second derivative has the form

ψ′′m,k(u) = (1− u)2k−3 [−k ln(1− u)]m−2

m!

[
− (2k − 3)km[−k ln(1− u)](1− u)−k

+ (k − 1)(k − 2)[−k ln(1− u)]2(1− u)−k − 2k2m(2m− 1)
[−k ln(1− u)]m

m!

+ k2m(m− 1)(1− u)−k + 2k(4k − 3)m
[−k ln(1− u)]m+1

m!

− (2k − 1)(2k − 2)
[−k ln(1− u)]m+2

m!

]
,

and its transformation is equal to

χ2,m,k(x) =
xm−2

m!
exp

(
−(2k − 3)x

k

)
h2,m,k(x),

where

h2,m,k(x) = f2,m,k(x)ex − g2,m,k(x)
xm

m!
(5.3.9)

with

f2,m,k(x) = (k − 1)(k − 2)x2 − k(2k − 3)mx+ k2m(m− 1), (5.3.10)

g2,m,k(x) = (2k − 1)(2k − 2)x2 − 2k(4k − 3)mx+ 2k2m(2m− 1). (5.3.11)

We first focus on the case k = 2 and m ≥ 2 with

f2,m,2(x) = −2m(x− 2m+ 2),

g2,m,2(x) = 6x2 − 20mx+ 8m(2m− 1).
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The first one is linear decreasing with zero at xf (m, 2) = 2(m−1) > 0. We start with proving

that h2,m,2(x) > 0, 0 < x < xf (m, 2). Since exf2,m,2(x) >
[
xm−2

(m−2)!
+ xm−1

(m−1)!

]
f2,m,2(x) then, it

suffices to show that(
1 +

x

m− 1

)
f2,m,2(x) > g2,m,2(x)

x2

(m− 1)m
, 0 < x < xf (m, 2).

This inequality can be rewritten as

pm(x) =
3x4 − 10mx3 + (9m− 4)mx2 −m2(m− 1)x− 2m2(m− 1)2

3
< 0

for 0 < x < xf (m, 2). Polynomial p2(x) = x4− 20
3
x3 + 28

3
x2− 4

3
x− 8

3
has two real zeros, which

are approximately equal to −0.4140 and 4.8066. Therefore this is negative on (0, xf (m, 2)) =
(0, 2). From now on we take m ≥ 3, and define a family of polynomials

pm,c(x) = x(x− 2m)

(
x2 − 4

3
mx+ c

)
, m ≥ 3, c >

4

9
m2.

Under this restriction, the last factor is always positive, and pm,c is negative in (0, 2m) ⊃
(0, xf (m, 2)). For every m ≥ 3 we find c0 = c0(m) > 4

9
m2 such that

pm(x) < pm,c0(x) < 0, 0 < x < xf (m, 2). (5.3.12)

Put

dm,c(x) = pm,c(x)− pm(x) =
(3c−m2 + 4m)x2−m(6c−m2 +m)x+ 2m2(m− 1)2

3
.

This function is convex and has a negative discriminant under the conditions c > m(m−4)
3

and(
1

2
m− 1

3
− 1

3

√
5m+ 1

)
(m− 1) < c <

(
1

2
m− 1

3
+

1

3

√
5m+ 1

)
(m− 1),

respectively. The former is satisfied for all c > 4
9
m2. From the latter one we pick c0 =(

1
2
m− 1

3
+ 1

3

√
5m
)

(m − 1), and check below that this is greater than 4
9
m2. For a(m) =

c0(m)− 4
9
m2, we have a(3) = 2

√
15−5
3
≈ 0.9153 > 0 and

a′(m) =
2m
√
m+ 9

√
5m− 15

√
m− 3

√
5

18
√
m

=
b(
√
m)

18
√
m
,
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say. It remains to observe that b(µ) > 0, µ ≥ 1, because b(1) = 6
√

5− 13 ≈ 0.4164 > 0, and
b′(µ) = 3(2µ2 + 6

√
5µ − 5) is increasing and positive for µ ≥ 1. In consequence, a(m) > 0

for every m ≥ 3. This completes the proof (5.3.12) and guarantees positivity of h2,m,2 on
(0, xf (m, 2)) for m ≥ 2.

For x > xf (m, 2) = 2(m − 1) we apply Lemma 9(i) for showing that −h2,m,2(x) =
−exf2,m,2(x) + g2,m,2(x)x

m

m!
changes the sign once from − into +. Note that xf (m, 2) =

2(m− 1) > m, −g2,m,2(2(m− 1)) = 16
(
m− 3

2

)
> 0 and

d

dx

g2,m,2(x)

f2,m,2(x)
= −3x2 − 12(m− 1)x+ 4m(3m− 4)

m(x− 2m+ 2)2
< 0,

because the discriminant of the numerator ∆ = −96
(
m− 3

2

)
< 0 for m ≥ 2. Accordingly,

the claim holds, and we conclude that h2,m,2 is first positive, and eventually negative on the
positive half-axis.

The sign sequences of all functions ψ′2,m,2(u) and ψ′′2,m,2(u), 0 < u < 1, m ≥ 2, are plus and
minus only. Therefore each ψ2,m,2 is consecutively convex increasing, concave increasing and
concave decreasing, and always positive. By Lemma 7(iiib), (ivc) and (i), Ψ2,m,2 is increasing
from 0 at the origin to the maximum located in the interval of concave increase of ψ2,m,2,
and decreases to 0 at 1. This proves the Proposition 14(iii) for k = 2.

Now we prove the analogous statement for k ≥ 3 and 2 ≤ m ≤ 2
3
k. Observe first that

function (5.3.10) has two zeros, because its discriminant ∆f (m, k) = k2m[4(k − 1)(k − 2) +
m] > 0. They amount to

xf,i(m, k) =
(2k − 3)m+ (−1)i

√
m[4(k − 1)(k − 2) +m]

2(k − 1)(k − 2)
k, i = 1, 2.

The latter is clearly positive, and so is the former, because f2,m,k(0) = k2m(m− 1) > 0. We
analyze the sign changes of (5.3.9) in the intervals (0, xf,1(m, k)), (xf,1(m, k), xf,2(m, k)), and
(xf,2(m, k),∞), when 2 ≤ m ≤ 2

3
k.

Firstly we show that h2,m,k is first positive and then negative in the first interval. To this
end we check that functions f = f2,m,k, g = g2,m,k satisfy the assumptions of Lemma 9(ii)

with xf = xf,1(m, k) and n = m. We start with verifying relation xf,1(m, k) ≤ m for m ≤ k2

2

(note that this condition is weaker than m ≤ 2
3
k, because 2

3
k ≤ k2

2
for k ≥ 2). The inequality

can be rewritten as

(3k − 4)
√
m ≤ k

√
4(k − 1)(k − 2) +m.

Squaring the left- and right-hand side expressions, we obtain the inequality which simplifies
to 4(k2 − 2m)(k − 1)(k − 2) > 0, as desired.
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Now we show that g2,m,k(xf,1(m, k)) > 0 for m < (k+1)2

6
. This restriction implies m ≤ 2

3
k,

because 2
3
k < (k+1)2

6
for all k 6= 1. We have g2,m,k(xf,1(m, k)) = k2m

(k−2)2
a1(m, k), where

a1(m, k) = 2(k + 1)(k − 2) + 3m− 3
√
m[4(k − 1)(k − 2) +m]. (5.3.13)

This is positive when [2(k+1)(k−2)+3m]2 > 9m[4(k−1)(k−2)+m], and this is equivalent
to 4(k − 2)2[(k + 1)2 − 6m] > 0.

We finally check that r(x) =
g2,m,k(x)

f2,m,k(x)
has positive derivative in (0, xf,1(m, k)), when 2 ≤

m ≤ 2
3
k. We have r′(x) = 2km

f22,m,k(x)
am,k(x), where

am,k(x) = −3(k − 1)2x2 + 2k(k − 1)(3m− k − 1)x+ k2m(2k − 3m).

This is concave, and its discriminant ∆a = 4k2(k − 1)2[(k + 1)2 − 6m] > 0 when m <
(k+1)2

6
. Hence am,k is positive in (0, xf,1(m, k)) (and so is r′) if it is non-negative at the end-

points. We have am,k(0) = k2m(2k − 3m) ≥ 0 when m ≤ 2
3
k. Moreover, am,k(xf,1(m, k)) =

k2

2(k−2)2
a2(m, k), where

a2(m, k) =
√
m[4(k − 1)(k − 2) +m]a1(m, k).(

cf 5.3.13)
)
. This is non-negative if m ≤ (k+1)2

6
. Since all the conditions of Lemma 9(ii) are

fulfilled, h2,m,k has a single zero in (0, xf,1(m, k)), and it changes the sign there from plus to
minus.

Next we prove that h2,m,k(x) < 0, xf,1(m, k) < x < xf,2(m, k) for all k ≥ 3 and 2 ≤
m ≤ 2

3
k. We first treat case m = 2, k = 3. Since f2,2,3(x) < 0, x ∈ (xf,1(2, 3), xf,2(2, 3)) =(

3
2
(3−

√
5), 3

2
(3 +

√
5)
)
≈ (1.1459, 7.8541), we have

h2,2,3(x) <

(
1 + x+

x2

2
+
x3

6

)
f2,2,3(x)− g2,2,3(x)

x2

2
.

The right-hand side equals to x5 − 36x4 + 150x3 − 183x2 + 54. This polynomial has three
zeros approximately equal to −0.4565, 0.7904, 31.4099, and is negative in (0.7904, 31.4099) ⊃
(1.1459, 7.8541). It remains to consider k ≥ 4 with 2 ≤ m ≤ 2

3
k, and use the bound

h2,m,k(x) <
xm−1

(m− 1)!

[
1 +

x

m
+

x2

m(m+ 1)

]
f2,m,k(x)− g2,m,k(x)

xm

m!
.

The right hand-side is negative iff

pm,k(x) = (k − 1)(k − 2)x4 + (−5k2m− 3k2 + 6km+ 3k)x3

+ (8k2m2 + 6k2m− 6km2 − 6km+ 2m2 + 2m)x2

+ (−5k2m3 − 4k2m2 + 3km3 + k2m+ 3km2)x+ k2(m4 −m2) < 0.
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Define
qm,k(x) = (k − 1)(k − 2)(x− 1)2[x− xf,1(m, k)][x− xf,2(m, k)],

which is non-positive in (xf,1(m, k), xf,2(m, k)), and set

dm,k(x) = qm,k(x)− pm,k(x) = a(m, k)x3 + b(m, k)x2 + c(m, k)x+ d(m, k),

where

a(m, k) = 3k2m+ k2 − 3km+ 3k − 4,

b(m, k) = −7k2m2 − 3k2m+ 6km2 + k2 − 2m2 − 3k − 2m+ 2,

c(m, k) = 5k2m3 + 2k2m2 − 3km3 − k2m− 3km2 + 3km,

d(m, k) = −k2m4 + 2k2m2 −mk2.

With use of p(m, k) = 3a(m,k)c(m,k)−b2(m,k)
9a(m,k)2

and q(m, k) = 2b3(m,k)
54a3(m,k)

− b(m,k)c(m,k)
6a2(m,k)

+ d(m,k)
2a(m,k)

, we
write down its discriminant

D(m, k) = p3(m, k) + q2(m, k) =
k2m

180a(m, k)4
δ0(m, k),

where δ0(m, k) =
∑6

i=0 a0,i(m)ki, with

a0,0(m) = −4m9 − 48m8 − 136m7 − 32m6 + 276m5 + 128m4 − 264m3 − 48m2

+ 124m− 32,

a0,1(m) = 48m9 + 480m8 + 1452m7 + 948m6 − 2112m5 − 2076m4 + 1680m3

+ 996m2 − 876m+ 144,

a0,2(m) = −196m9 − 1660m8 − 5052m7 − 4708m6 + 4975m5 + 8458m4

− 3163m3 − 4302m2 + 2339m− 264,

a0,3(m) = 288m9 + 2124m8 + 6432m7 + 7782m6 − 2238m5 − 11184m4 − 24m3

+ 6360m2 − 2502m+ 252,

a0,4(m) = −64m9 − 440m8 − 1905m7 − 4044m6 − 2602m5 + 2818m4 + 3331m3

− 3042m2 + 923m− 132,

a0,5(m) = −228m7 − 732m6 − 540m5 + 2016m4 − 816m3 − 60m+ 36,

a0,6(m) = 60m7 + 180m6 + 840m5 − 280m4 − 344m3 + 36m2 + 52m− 4.

Our purpose is to show that δ0(m, k) and so D(m, k) are positive for all k ≥ 4 and 2 ≤
m ≤ 2

3
k. Observe that δ0(2, k) = 39092k6 − 67668k5 − 670046k4 + 1782480k3 − 1216850k2 +

309000k − 25000, and its greatest real zero is approximately equal to 3.5943 which means
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that δ0 > 0 for m = 2 and k ≥ 4. Similarly, δ0(3, k) = 435068k6− 1022364k5− 11599695k4 +
37943730k3 − 27453327k2 + 7331148k − 644204, has its greatest real zero approximately at
4.6413 so that δ0 > 0 for m = 3 and k ≥ 5 > 3

2
m > 4.5.

We can focus on proving that δ0(m, k) > 0 for m ≥ 4 and k ≥ 3
2
m. To this end we

introduce polynomials δj(m, k) = δj−1(m, k + 1) − δj−1(m, k), j = 1, 2, 3, 4, of the form
δj(m, k) =

∑6−j
i=0 aji(m)ki with coefficients

a1,0(m) = 76m9 + 504m8 + 759m7 − 574m6 − 1677m5 − 248m4 + 664m3 + 48m2

− 124m+ 32,

a1,1(m) = 216m9 + 1292m8 + 792m7 − 4826m6 − 4832m5 + 3036m4 + 782m3

− 1476m2 + 876m− 144,

a1,2(m) = 480m9 + 3732m8 + 6486m7 − 5538m6 − 15126m5 − 684m4 + 6594m3

+ 1368m2 − 1788m+ 264,

a1,3(m) = −256m9 − 1760m8 − 8700m7 − 19896m6 + 992m5 + 25832m4

− 1716m3 − 11448m2 + 4132m− 248,

a1,4(m) = −240m7− 960m6+ 9900m5+ 5880m4− 9240m3+ 540m2+ 480m+120,

a1,5(m) = 360m7+ 1080m6+ 5040m5− 1680m4− 2064m3+ 216m2+ 312m−24,

a2,0(m) = 440m9 + 3264m8 − 1302m7 − 30140m6 − 4026m5 + 32384m4

− 5644m3 − 10800m2 + 4012m− 32,

a2,1(m) = 192m9 + 2184m8 − 12288m7 − 69204m6 + 37524m5 + 91248m4

− 39240m3 − 28368m2 + 12300m+ 144,

a2,2(m) = −768m9 − 5280m8 − 23940m7 − 54648m6 + 112776m5 + 95976m4

− 81228m3 − 28944m2 + 18396m− 264,

a2,3(m) = 2640m7 + 6960m6 + 90000m5 + 6720m4 − 57600m3 + 4320m2

+ 5040m+ 240,

a2,4(m) = 1800m7 + 5400m6 + 25200m5 − 8400m4 − 10320m3 + 1080m2

+ 1560m− 120,

a3,0(m) = −576m9 − 3096m8 − 31788m7 − 111492m6 + 265500m5 + 185544m4

− 188388m3 − 51912m2 + 37296m,

a3,1(m) = −1536m9 − 10560m8 − 32760m7 − 66816m6 + 596352m5 + 178512m4

− 376536m3 − 40608m2 + 58152m− 288,

a3,2(m) = 18720m7 + 53280m6 + 421200m5 − 30240m4 − 234720m3

+ 19440m2 + 24480m,
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a3,3(m) = 7200m7 + 21600m6 + 100800m5 − 33600m4 − 41280m3 + 4320m2

+ 6240m− 480,

a4,0(m) = −1536m9 − 10560m8 − 6840m7 + 8064m6 + 1118352m5 + 114672m4

− 652536m3 − 16848m2 + 88872m− 768,

a4,1(m) = 59040m7 + 171360m6 + 1144800m5 − 161280m4 − 593280m3

+ 51840m2 + 67680m− 1440,

a4,2(m) = 21600m7 + 64800m6 + 302400m5 − 100800m4 − 123840m3 + 12960m2

+ 18720m− 1440.

We first show that δ4(m, k), which is quadratic function of argument k, is positive for all
m ≥ 4 and k ≥ 3

2
m. Coefficient a4,2(m) has the greatest real zero approximately equal to

0.5121. Therefore a4,2(m) > 0 for all m ≥ 4. In order to prove positivity of δ4(m, k) for all
m ≥ 4 and k ≥ 3

2
m, it suffices to verify that δ4(m, 0) < 0 < δ4

(
m, 3m

2

)
. The first relation

follows from the fact that δ4(m, 0) = a4,0(m) has the greatest zero at 3.9567, i.e. it is negative
for m ≥ 4. The latter one is true because δ4

(
m, 3m

2

)
= 47064m9 + 223800m8 + 930600m7 +

1498464m6 + 597792m5− 746088m4− 532656m3 + 81432m2 + 86712m− 768 has the greatest
zero at 0.5127, and it positive for greater m. So we proved that δ4(m, k) > 0 for m ≥ 4 and
k ≥ 3

2
m.

We show the same for δ3. For fixed m, the smallest possible values of k are 3m
2

if m is
even and 3m+1

2
if it is odd. Since

δ3

(
m,

3m

2

)
= 21996m10 + 98604m9 + 407844m8 + 702288m7 + 575676m6

+ 19728m5 − 314460m4 − 195840m3 + 35316m2 + 36864m,

δ3

(
m,

3m+1

2

)
= 21996m10+122136m9+511644m8+1135908m7+1190088m6

+ 213324m5−620904m4−392868m3+62532m2+72300m−204,

are ultimately positive, and have greatest zeros equal to 0.5174 and 0.5155, respectively. They
are positive for all m ≥ 4. Positivity for greater k follow by induction from the relations
δ3(m, k + 1) = δ3(m, k) + δ4(m, k) > 0, because both summands are greater than 0.

In the same manner we can prove the same conclusions for δj, j = 2, 1, and 0. It suffices
to check that the leading terms of δj

(
m, 3m

2

)
and δj

(
m, 3m+1

2

)
have positive coefficients, and
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respective maximal zeros are less than 4. Indeed, we have

δ2

(
m,

3m

2

)
=

14769

2
m11 +

49311

2
m10 + 100916m9 + 123099m8 + 119073m7

+
106319

2
m6 − 54879

2
m5 − 150395

2
m4 − 5995m3 + 7056m2

+ 4228m− 32,

δ2

(
m,

3m+ 1

2

)
=

14769

2
m11 +

71307

2
m10 + 144335m9 + 303096m8 +

738789

2
m7

+ 220087m6 − 88749

2
m5 − 341783

2
m4 − 70048m3 +

42165

2
m2

+
30977

2
m− 7

2
,

δ1

(
m,

3m

2

)
=

7479

4
m12 +

8505

4
m11 + 12771m10 − 52721

4
m9 +

13347

2
m8

+
6129

4
m7 − 20099

2
m6 − 74703

4
m5 + 18556m4 − 6410m3

+ 1956m2 − 340m+ 32,

δ1

(
m,

3m+ 1

2

)
=

7479

4
m12 +

11637

2
m11 +

89397

4
m10 +

111575

4
m9 +

114795

4
m8

+
87531

4
m7 − 2894m6 − 102723

4
m5 − 28513

4
m4 +

6011

4
m3

+
8571

4
m2 + 403m+

7

4
,

δ0

(
m,

3m

2

)
=

5751

16
m13 − 14985

16
m12 +

17487

16
m11 − 38871

4
m10 +

55325

4
m9

− 120585

16
m8 − 31243

4
m7 − 2429

16
m6 +

263301

16
m5 − 16144m4

+
29373

4
m3 − 1956m2 + 340m− 32,

δ0

(
m,

3m+ 1

2

)
=

5751

16
m13 − 27

16
m12 + 1233m11 − 80631

16
m10 − 16785

16
m9

− 4269

4
m8 − 62021

8
m7 − 92313

16
m6 +

58641

8
m5 − 9333

8
m4

− 47

4
m3 − 231

4
m2 +

279

8
m− 27

16
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satisfy the first requirement, and their greatest zeros are approximately equal to 0.5468,
0.5291, 1.0630, 0.6453, 3.3136, and 2.2059, respectively. This completes the proof that
δ0(m, k) and so D(m, k) are positive for every m ≥ 2 and k ≥ 3

2
m, and implies that each

respective dm,k has a single real zero where it changes its sign from minus to plus.
In order to show that dm,k > 0 on (xf,1(m, k), xf,2(m, k)), it is enough to check the

condition at xf,1(m, k) only. We have

dm,k(xf,1(m, k)) =
k3m
√
m(m+ 1)

(k − 2)2
a(m, k),

where

a(m, k) =
√
m[k(2k2 + k − 19) + 3m(k − 1) + 18]

− [(k + 1)(k − 2) + 3m(k − 1)]
√

4(k − 1)(k − 2) +m.

Since both terms are positive for k ≥ 4 and 2 ≤ m ≤ 2
3
k, we can verify positivity of the

difference of their squares. This can be reduced to the inequality

4k(k − 1)(k − 2)3(m− 1)[(k + 1)2 − 6m] > 0

which is true under our restrictions. Accordingly, positivity of dm,k on interval
(xf,1(m, k), xf,2(m, k)) implies negativity of pm,k and h2,m,k there.

Now we prove that h2,m,k is first negative and then positive in (xf,2(m, k),∞) when k ≥ 3
and m ≥ 2 (assumption k ≥ 3

2
m is redundant in this case). We use Lemma 9(i) with

f = f2,m,k, g = g2,m,k, n = m, and xf = xf,2(m, k). Obviously, f2,m,k(x) ↗ ∞ as x ↗ ∞.
Condition xf,2(m, k) > m is first verified for m = 2. We have

xf,2(2, k) =
2k − 3 +

√
2(k − 1)(k − 2) + 1

(k − 1)(k − 2)
k > 2, k ≥ 2,

iff
k
√

2(k − 1)(k − 2) + 1 > 2(k − 1)(k − 2)− (2k − 3)k = −3k + 4.

This is obvious, because the left- and right-hand sides of the inequality are positive and
negative, respectively. We also check that numerator and denominator of

∂

∂m
[xf,2(m, k)−m] =

(3k − 4)
√
m[4(k − 1)(k − 2) +m] + 2k(k − 1)(k − 2) + km

2(k − 1)(k − 2)
√
m[4(k − 1)(k − 2) +m]

are greater than 0, which implies that xf,2(m, k) > m for every k ≥ 3 and m ≥ 2. Further,
we easily see that

g2,m,k(xf,2(m, k)) =
mk2

(k − 2)2

[
2k(k − 1) + 3m− 4 + 3

√
m[4(k−1)(k−2) +m]

]
> 0.
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Since

d

dx

g2,m,k(x)

f2,m,k(x)
=

2km

f 2
2,m,k(x)

am,k(x),

where

am,k(x) = −3(k − 1)2x2 + 2k(k − 1)(3m− k − 1)x+ k2m(2k − 3m),

it suffices to check that am,k(x) < 0 for x > xf,2(m, k). Note that the coefficient at the square

term is negative, and ∆a = 4k2(k− 1)2[(k+ 1)2− 6m]. If m > (k+1)2

6
, then am,k(x) < 0 for all

x ∈ R, as desired. For m ≤ (k+1)2

6
, we prove that the greater zero of am,k (unique if ∆a = 0),

equal to x2,a(m, k) = k
3(k−1)

(
3m− k − 1 +

√
(k + 1)2 − 6m

)
is smaller than xf,2(m, k). We

have

6(k − 1)(k − 2)[xf,2(m, k)− x2,a(m, k)] = 3
√
m[4(k − 1)(k − 2) +m]

+ [2(k + 1)(k − 2) + 3m]− 2(k − 2)
√

(k + 1)2 − 6m.

It suffices to show that the difference of the squares of two expressions in the second line is
positive. This relation can be simplified to 9m[4(k − 1)(k − 2) + m] > 0 which is evidently
true. This completes verification of assumptions in Lemma 9(i) and sign analysis of h2,m,k in
(xf,2(m, k),∞).

Summing up, for all m ≥ 2 and k ≥ 3
2
m, function h2,m,k(x), x > 0, is first positive, then

negative and finally positive again. If follows that each respective ψm,k(u), 0 < u < 1, is first
convex, then concave, and finally convex. Since it also vanishes at 0 and 1, and is positive,
and has a single maximum in between, it is first convex increasing, then concave increasing
and ultimately decreasing. By Lemma 7, Ψm,k is also increasing-decreasing, and its unique
local maximum is global as well.

(iv) If k ≥ 3 and m > 2
3
k, then limu↘0 Ψm,k(u) = limu↗1 Ψm,k(u) = 0, and so the

supremum of Ψm,k is attained at some inner point u0 of (0, 1).

Proof of Remark 10. Using (5.3.9)–(5.3.11) for m, k ≥ 3, and expanding the exponential
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function into the Taylor series, we obtain

h2,m,k(x) = k2m(m− 1) +
[
k2m(m− 1)− (2k − 3)km

]
x

+
[
k2m(m− 1)− (2k − 3)km2 + (k − 1)(k − 2)m(m− 1)− 2k2m(2m− 1)

]xm
m!

+
[
k2m(m− 1)− (2k − 3)km(m+ 1) + (k − 1)(k − 2)m(m+ 1)

+ 2k(4k − 3)m(m+ 1)
] xm+1

(m+ 1)!

+
[
− (2k − 3)km(m+ 2) + (k − 1)(k − 2)(m+ 1)(m+ 2)

− k2m(m− 1) + 2(k − 1)(2k − 1)(m+ 1)(m+ 2)
] xm+2

(m+ 2)!

+
∑

i∈N\{1,m,m+1,m+2}

[
k2m(m− 1)− (2k − 3)kmi+ (k − 1)(k − 2)i(i− 1)

]xi
i!

=
∞∑
i=0

am,k(i)
xi

i!
.

Clearly, am,k(0) > 0 and am,k(1) = [(m− 3)k + 3]km > 0. Moreover

am,k(m) = −m
[
(k2 − 2)m+ 3k(km− 1) + 2

]
< 0,

am,k(m+ 1) = 2m
[
(4k − 3)km+ 3k(k − 1) +m+ 1

]
> 0,

am,k(m+ 2) = −k(2m+ 1)[m(2k − 3) + 6(k − 1)] < 0.

Function

am,k(i) = k2m(m− 1)− (2k − 3)kmi+ (k − 1)(k − 2)i(i− 1)

is decreasing-increasing with the minimum at

bm,k =
(2k − 3)km+ (k − 1)(k − 2)

2(k − 1)(k − 2)

One can easily check that bm,k > m. This implies that the sign sequence for (am,k)
m+2
i=0 is

+−+−. We also note that

−4(k − 1)(k − 2)

mk
am,k

(
bm,k ∓

1

2

)
= 8k3 − 30k2 + km+ 34k − 12

= 8(k − 2)3 + 18(k − 2)2 + 10(k − 2) + km > 0
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which implies that am,k is negative for at least one integer i at the neighborhood of bm,k for
every k,m ≥ 3. Furthermore, am,k(m+ 3) > 0 iff

m > µ(k) =
1

2

(
k2 + 3k − 5 +

√
k4 + 6k3 − 13k2 + 6k + 1

)
,

and bm,k > m+ 3 iff

m > ν(k) = 5
(k − 1)(k − 2)

3k − 4
.

Since µ(k) > ν(k) for all k ≥ 3, relation am,k(m + 3) > 0 implies bm,k > m + 3. Therefore
(am,k)

∞
i=m+3 has the sign sequence + − + if m > µ(k), and −+ when m ≤ µ(k). Since

µ(k) > 2
3
k, we conclude from Lemma 4 that for k ≥ 3, under assumptions 2

3
k < m ≤ µ(k),

and m > µ(k), the maximal possible sign changes of h2,m,k and ψ′′m,k are + − + − + and
+−+−+−+, respectively. It follows that ψm,k may possibly have 2 or 3 intervals of concave
increase then, and Ψm,k may have at most 1 local maximum in each of them.

Proposition 15. Under assumptions of Proposition 14, with the exception of case m = k =
1, bound

Var(Rm+1,k −Rm,k)

Var X1

≥ 0

is the best possible. In particular,
(i) if m ≥ 2, and k ≥ 1, then

lim
u↘0

Ψm,k(u) = 0,

and the zero bound is attained under conditions of Theorem 6(ii),
(ii) if m ≥ 1, and k ≥ 2, then

lim
u↗1

Ψm,k(u) = 0,

and the zero bound is attained under conditions of Theorem 6(iii).

Proof. In view of Theorem 7, it suffices to notice that

lim
u↘0

Ψm,k(u) = 0, k ≥ 2,

lim
u↗1

Ψm,k(u) = 0, m ≥ 2.

Remark 11. Calculating the sharp lower bounds for the case k = m = 1 is an open problem.
We have

inf
0<u<1

Ψ1,1(u) = Ψ1,1(0.37977) = 0.88514
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which is the lowest possible value attained by the sequences of continuous distributions tending
weakly to some two-point ones , as in Theorem 6(i). However, when we consider the family of
Weibull baseline distribution functions Fα(x) = 1− exp (−xα), x > 0, with shape parameter
α > 0 (the scale parameter does not matter here), then we obtain

Varα(R2,1 −R1,1)

VarαX1

= V (α)

=
Γ(1 + 1/α) + Γ(2 + 2/α)− 2Γ(1 + 1/α)Γ(2+2/α)

Γ(2+1/α)
− [Γ(2 + 1/α)−Γ(1 + 1/α)]2

Γ(1 + 2/α)− Γ2(1 + 1/α)

≥ V (4.88090) = 0.57492

(cf Arnold et al, 1998, p. 55).

Table 5.1: Upper bounds on variances of kth record spacings
Var(Rm+1,k−Rm,k)

VarX1
for k = 2, 3, 4

and m = 2, . . . , 8.

k 2 3 4
m u0(m, k) Ψm,k(u0) u0(m, k) Ψm,k(u0) u0(m, k) Ψm,k(u0)

2 0.86934 1.06896 0.44816 0.79186 0.26639 0.88481
3 0.95642 1.72309 0.75606 0.81215 0.55201 0.69942
4 0.98432 3.01160 0.86434 0.99074 0.70792 0.70797
5 0.99419 5.45217 0.92156 1.29382 0.80154 0.78566
6 0.99782 10.0581 0.95377 1.75316 0.86280 0.91637
7 0.99918 18.7747 0.97243 2.42904 0.90421 1.10242
8 0.99969 35.3359 0.98344 3.41419 0.93267 1.35393

Table 5.1 depicts upper bounds on ratios
Var(Rm+1,k−Rm,k)

VarX1
equal to Ψm,k(u0) for k = 2, 3, 4

and m = 2, . . . , 8 and arguments u0 for which respective functions Ψm,k attain their maxima.
We can observe that when m increases then both arguments u0 and values Ψm,k(u0) increase
for all k ∈ {2, 3, 4} except k = 4 and m = 2, 3. One can expect that for greater k, the
bounds first decrease and then increase in m. It is also seen that when k increases then both
arguments u0 and Ψm,k(u0) decreases for all m ∈ {2, . . . , 8} except k = 3, 4 and m = 2.
Greater values of bounds occur for small k as m increases.
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Summary

This dissertation is devoted to determination of sharp bounds on the expectations and vari-
ances of linear combinations of order statistics and kth records based on independent and
identically distributed random variables. Its novelty consists in the following. The bounds
on the expectations are expressed in the scale units being the Gini mean difference of the
population. Bounds on variances of single order statistics and records are extended to the
case of proper linear combinations. The main idea of our reasoning consists in integral rep-
resentation of the expectations, variances and covariances of order and record statistics so
that the integrand is the composition of some (usually complicated) function with the base-
line distribution function. Below we present our general results with some exemplary special
cases.

Bounds on the expectations of L-statistics

Suppose that X1, . . . , Xn are non-degenerate i.i.d. random variables with a finite mean µ =
EX1. Let X1:n ≤ . . . ≤ Xn:n stand for the respective order statistics. Firstly we focus on
determining of sharp lower and upper bounds on the expectations of properly centered L-
statistics E

∑n
i=1 ci(Xi:n−µ), with arbitrary c1, . . . , cn ∈ R and their special cases, expressed

in terms of the Gini mean difference scale units ∆ = E|X1−X2|. Given c = (c1, . . . , cn) ∈ Rn

with the arithmetic mean c̄ = 1
n

∑n
i=1 ci, we define function

Ξc(u) =
n−2∑
i=0

n(n− 1)

2(i+ 1)(n− i− 1)

[
i+1∑
k=1

(c̄− ck)

](
n− 2

i

)
ui(1− u)n−2−i

on the interval [0, 1].

Theorem (see Theorem 2) Under the above assumptions and notation, the following bounds
are optimal

min
0≤u≤1

Ξc(u) ≤ E
∑n

i=1 ci(Xi:n − µ)

∆
≤ max

0≤u≤1
Ξc(u).
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If 0 < u0 < 1 is the argument of the maximum (minimum, respectively), then the upper
(lower) bound is attained iff the parent distribution function has the form

F (x) =


0, x < a,
u0, a ≤ x < b,
1, x ≥ b,

for arbitrary a < b.
If the maximum (minimum) amounts either to Ξc(0) or to Ξc(1), then the upper (lower,

respectively) bound is attained in the limit by the two-point distributions such that the prob-
abilities of the smaller point tend to 0 and 1, respectively.

If Ξc has multiple extremes which happens very rarely other discrete distributions may attain
the bounds as well. We do not discuss them here. For brevity of presentation, further on
we use the following convention. Writing either the lower or the upper bound as Ξc(u0),
say, for some 0 < u0 < 1, we mean that the bound is attained by the two-point distribution
described in the Theorem. If the bound is either Ξc(0) or Ξc(0), the bounds are attained in
the limit by the two-point distributions with probability of the smaller point tending to 0
and 1, respectively.

For single order statistics Xr:n, 1 ≤ r ≤ n, Ξc simplifies to

Ξr:n(u) =
r−2∑
i=0

n− 1

2(n− i− 1)

(
n− 2

i

)
ui(1− u)n−2−i −

n−2∑
i=r−1

n− 1

2(i+ 1)

(
n− 2

i

)
ui(1− u)n−2−i.

Proposition (see Proposition 1) (i) For the extreme order statistics, we have

Ξ1:n(0) = −n− 1

2
≤ E

X1:n − µ
∆

≤ Ξ1:n(1) = −1

2
,

Ξn:n(0) =
1

2
≤ E

Xn:n − µ
∆

≤ Ξn:n(1) =
n− 1

2
.

(ii) For the second extremes, the derivatives Ξ′r:n(u), r = 2, n − 1, have unique zeros v1(2)
and u1(n− 1) = 1− v1(2), respectively, and

Ξ2:n(v1(2)) ≤ E
X2:n − µ

∆
≤ Ξ2:n(0) =

1

2
,

Ξn−1:n(1) = −1

2
≤ E

Xn−1:n − µ
∆

≤ Ξn−1:n(u1(n− 1)).

(iii) For 3 ≤ r ≤ n− 2, Ξ′r:n(u) has two zeros u1(r) < v1(r) in (0, 1), and

Ξr:n(v1(r)) ≤ E
Xr:n − µ

∆
≤ Ξr:n(u1(r)),
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In a similar way, we evaluate the expectations of differences of two order statistics, trimmed
and Winsorized means, and their differences, and mean deviation from the median.

Bounds on the variances of L-statistics

We consider i.i.d. random variables X1, . . . , Xn with a positive and finite variance. Define

Φc(u, v) =

[
n−1∑
i=0

n

i+ 1

(
i+1∑
k=1

ck

)(
n− 1

i

)
ui(1− u)n−1−i

]

×

[
n−1∑
j=0

n

n− j

(
n∑

m=j+1

cm

)(
n− 1

j

)
vj(1− v)n−1−j

]

−
n−2∑
i=0

n−2∑
j=i

n(n− 1)

(i+ 1)(n− 1− j)

(
i+1∑
k=1

ck

)(
n∑

m=j+2

cm

)

× n!

i!(j − i)!(n− j)!
ui(v − u)j−i(1− v)n−2−j.

for 0 < u ≤ v < 1 and set Ψc(u) = Φc(u, u).

Theorem (see Theorem 3) Under the above assumptions and notation, we have

Var(
∑n

i=1 ciXi:n)

Var X1

≤ sup
0<u≤v<1

Φc(u, v).

Moreover, if

sup
0<u≤v<1

Φc(u, v) = sup
0<u<1

Ψc(u),

then the bound is sharp.

We also show that the lower bounds on the ratio
Var(

∑n
i=1 ciXi:n)

VarX1
trivially vanish iff c1cn = 0.

In the case of spacings Xi+1:n −Xi:n, 1 ≤ i < n <∞, function Ψc takes on the form

Ψi:n(u) =

(
n

i

)
ui−1(1− u)n−i−1

[
1−

(
n

i

)
ui(1− u)n−i

]
.
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Proposition (see Propositions 9 and 10) The following bounds are sharp.
(i) If integer n ≥ 3, then

0 = Ψ1:n(1) ≤ Var(X2:n−X1:n)
VarX1

≤ Ψ1:n(0) = n,

0 = Ψn−1:n(0) ≤ Var(Xn:n−Xn−1:n)
VarX1

≤ Ψn−1:n(1) = n.

(ii) If integer n ≥ 4 and 2 ≤ i ≤ n− 2, then Ψ′i:n has either one or three zeros, and

0 = Ψi:n(0) = Ψi:n(1) ≤ V ar(Xi+1:n −Xi:n)

Var X1

≤ Ψi:n(u0),

where u0 is either the single zero of the derivative, or the first or third zero of Ψ′i:n otherwise.
The argument is chosen then so that it provides the greater value of Ψi:n.

Case n = 2 with i = 1 for which the lower bound is strictly positive is not discussed in
this summary.

Bounds on the expectations of linear combinations of

records

Let X1, X2, . . . be i.i.d. random variables with finite mean µ. Let R1,k, R2,k, . . . denote re-
spective kth record values. We assume that ERn,k < ∞ for some fixed n and k. Below we
describe sharp lower and upper bounds for expectations of arbitrary linear combinations of
kth records E

[∑n
i=1 ci(Ri,k − µ

)]
, centered about the population mean, and expressed in the

Gini mean difference units ∆ = E|X1 −X2|. We use the following notation

Ξn,k(u) =
1

2u

[
(1− u)k−1

n−1∑
i=0

[
− k ln(1− u)

]i
i!

− 1

]
,

Ξc,k(u) =
n∑
i=1

ciΞi,k(u) =
1

2u

[
(1− u)k−1

n−1∑
i=0

(
n∑

j=i+1

cj

)
[−k ln(1− u)]i

i!
−

n∑
j=1

cj

]
,

where c = (c1, . . . , cn) ∈ Rn.

Theorem (see Theorem 5) Under the above assumptions and notation, the following bounds

inf
0<u<1

Ξc,k(u) ≤
E
[∑n

i=1 ci(Ri,k − µ
)]

∆
≤ sup

0<u<1
Ξc,k(u)
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are sharp.

The attainability conditions are similar to these in the expectation problems. The only
differences are that exact values at the end-points 0 and 1 are replaced by respective limits,
and discrete two-points distributions are replaced by their continuous approximations. Ac-
cordingly, all bounds for the combinations of records are attained in the limit. For single
records Rn,k, we have Ξc,k = Ξn,k.

Proposition (see Proposition 12) For various natural n ≥ 2 and k ≥ 1, we have the following
sharp bounds.
(i) For n ≥ 2 and k = 1, yields

1

2
= Ξn,1(0+) ≤ E(Rn,1 − µ)

∆
≤ Ξn,1(1−) =∞.

(ii) If n = k = 2, then

−1

2
= Ξ2,2(1−) ≤ E(R2,2 − µ)

∆
≤ Ξ2,2(0+) =

1

2
.

(iii) For n ≥ 3 and k = 2

−1

2
= lim

u↗1−
Ξn,2(1−) ≤ E(Rn,2 − µ)

∆
≤ Ξn,2(u1) >

1

2
,

where u1 is the unique zero of Ξ′n,2 in (0, 1).
(iv) For n = 2 and k ≥ 3

−1

2
> Ξ2,k(u1) ≤ E(R2,k − µ)

∆
≤ Ξ2,k(0+) =

1

2
,

where u1 ∈ (0, 1) is the unique solution zero of Ξ′2,k in (0, 1).
(v) For k ≥ 3 and n ≥ 3, we have

−1

2
> Ξn,k(u2) ≤ E(Rn,k − µ)

∆
≤ Ξn,k(u1) >

1

2
,

with 0 < u1 < u2 < 1 being the only two solutions to equation Ξ′n,k(u) = 0.

Similarly, we evaluated the expectations of differences of kth record values E(Rn,k − Rm,k),
1 ≤ m < n.
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Variances of linear combinations of records

Let X1, X2, . . . be i.i.d. random variables with finite second moment. Assume that ER2
n,k <

∞. For given positive integers n and k, and for a fixed non-zero vector c = (c1, . . . , cn) ∈ Rn,
we define functions

Φc,k(u, v) =
(1− v)k−1

u

{[
n∑
j=1

cj − (1− u)k
n−1∑
i=0

(
n∑

j=i+1

cj

)
[−k ln(1− u)]i

i!

]

×
n−1∑
i=0

(
n∑

j=i+1

cj

)
[−k ln(1− v)]i

i!

−
∑

1≤i<j≤n

cicj

j−i−1∑
p=0

p∑
q=0

(−1)q[−k ln(1− u)]i+q[−k ln(1− v)]p−q

(i− 1)!q!(p− q)!(p+ i)

}
acting on the triangle 0 < u ≤ v < 1, and Ψc,k(u) = Φc,k(u, u), 0 < u < 1.

Theorem (see Theorem 6) Under the above conditions and notation, we have

Var(
∑n

i=1 ciRi,k)

Var X1

≤ sup
0<u≤v<1

Φc,k(u, v).

Moreover, if
sup

0<u≤v<1
Φc,k(u, v) = sup

0<u<1
Ψc,k(u),

then the bound is sharp.

We also proved that the lower bounds on the variance ratio vanish except for the case k = 1
with c1 6= 0. For the kth record spacings Rm+1,k −Rm,k, function Ψc,k has a simpler form

Ψm,k(u) =
[−k ln(1− u)]m(1− u)k−1

um!

[
1− (1− u)k[−k ln(1− u)]m

m!

]
.

Proposition (see Proposition 14) The following bounds are tight.
(i) If k = 1 and m ≥ 1, then

Var(Rm+1,1 −Rm,1)

Var X1

≤ Ψm,1(1−) = +∞.

(ii) If m = 1 and k ≥ 2, then

Var(R2,k −R1,k)

Var X1

≤ Ψ1,k(0+) = k.
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(iii) If either k = 2 ≤ m or k ≥ 3 with 2 ≤ m ≤ 2
3
k, then

Var(Rm+1,k −Rm,k)

Var X1

≤ Ψm,k(u0),

where 0 < u0 < 1 is the unique solution to Ψ′m,k(u) = 0.

(iv) If finally k ≥ 3 with m > 2
3
k, then

Var(Rm+1,k −Rm,k)

Var X1

≤ Ψm,k(u0),

where 0 < u0 < 1 is the global maximum point of Ψm,k over (0, 1).

In the last case, we can formally prove that Ψm,k has three local maxima at most.
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Streszczenie

Dysertacja ta poświȩcona jest wyznaczeniu optymalnych oszacowań wartości oczekiwanych i
wariancji kombinacji liniowych statystyk pozycyjnych oraz k-tych rekordów skonstruowanych
na bazie niezależnych zmiennych losowych o tym samym rozk ladzie. Jest ona nowatorska
w dwóch aspektach. Oszacowania wartości oczekiwanych zosta ly wyrażone w jednostkach
średniej różnicy Giniego populacji, a oszacowania wariancji pojedynczych statystyk pozy-
cyjnych i rekordów zosta ly uogólnione na przypadek nietrywialnych liniowych ich kombinacji.
Zasadnicza idea naszego rozumowania polega na przedstawieniu wartości oczekiwanych, wa-
riancji i kowariancji statystyk pozycyjnych i rekordowych w postaci ca lkowej w taki sposób,
aby wyrażenie podca lkowe stanowi lo z lożenie pewnej funkcji (zwykle opisanej bardzo skom-
plikownym wzorem) z dystrybuanta̧ rozważanych zmiennych losowych. Poniżej prezentujemy
nasze ogólne rezultaty wraz z przyk ladowymi przypadkami szczególnymi.

Oszacowania wartości oczekiwanych L-statystyk

Przypuśćmy, że X1, . . . , Xn sa̧ niezdegenerownymi, niezależnymi zmiennymi losowymi o tym
samym rozk ladzie ze skończona̧ średnia̧ µ = EX1. Niech X1:n ≤ . . . ≤ Xn:n oznaczaja̧
ich statystyki pozycyjne. Najpierw koncentrujemy siȩ na wyznaczeniu optymalnych osza-
cowań górnych i dolnych wartości oczekiwanych odpowiednio scentrowanych L-statystyk
E
∑n

i=1 ci(Xi:n − µ), dla dowolnie ustalonych c1, . . . , cn ∈ R, oraz ich specjalnych przy-
padków. Sa̧ one wyrażone w jednostkach średniej różnicy Giniego ∆ = E|X1 − X2|. Dla
c = (c1, . . . , cn) ∈ Rn ze średnia̧ arytmetyczna̧ c̄ = 1

n

∑n
i=1 ci definiujemy funkcjȩ

Ξc(u) =
n−2∑
i=0

n(n− 1)

2(i+ 1)(n− i− 1)

[
i+1∑
k=1

(c̄− ck)

](
n− 2

i

)
ui(1− u)n−2−i

określona̧ na przedziale [0, 1].

Twierdzenie (patrz Twierdzenie 2) Przy powyższych za lożeniach i oznaczeniach, nastȩpuja̧ce
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oszacowania sa̧ optymalne

min
0≤u≤1

Ξc(u) ≤ E
∑n

i=1 ci(Xi:n − µ)

∆
≤ max

0≤u≤1
Ξc(u).

Jeśli 0 < u0 < 1 jest argumentem maksimum (odpowiednio minimum), to górne (dolne) osza-
cowanie jest osia̧gane wtedy i tylko wtedy, gdy dystrybuanta rozważanych zmiennych losowych
ma postać

F (x) =


0, x < a,
u0, a ≤ x < b,
1, x ≥ b,

dla dowolnie ustalonych a < b.
Jeśli maksimum (minimum) wynosi albo Ξc(0) albo Ξc(1), to górne (odpowiednio dolne)

oszacowanie jest osia̧gane w granicy przez rozk lady dwu–punktowe takie, że prawdopodo-
bieństwa mniejszego punktu zbiegaja̧ odpowiednio do 0 i 1.

Jeżeli Ξc ma wielokrotne ekstrema, co zdarza siȩ bardzo rzadko, to również inne rozk lady
dyskretne osia̧gaja̧ te oszacowania. Nie omawiamy ich w tym streszczeniu. W celu skrócenia
naszej prezentacji, bȩdziemy też używać nastȩpuja̧cej konwencji. Pisza̧c, że dolne albo górne
oszacowanie wynosi Ξc(u0) dla pewnego 0 < u0 < 1, przyjmujemy milcza̧co, że oszacowanie
to jest osia̧gane przez rozk lady dwu-punktowe opisane w powyższym twierdzeniu. Jeżeli
oszacowanie jest równe Ξc(0) albo Ξc(1), to jest ono osia̧gane w granicy przez przez rozk lady
dwu-punktowe o prawdopodobieństwie mniejszego punktu zbiegaja̧cym odpowiednio do 0 i
1.

Dla pojedynczej statystyki pozycyjnej Xr:n, 1 ≤ r ≤ n, funkcja Ξc upraszcza siȩ do

Ξr:n(u) =
r−2∑
i=0

n− 1

2(n− i− 1)

(
n− 2

i

)
ui(1− u)n−2−i −

n−2∑
i=r−1

n− 1

2(i+ 1)

(
n− 2

i

)
ui(1− u)n−2−i.

Stwierdzenie (patrz Stwierdzenie 1) (i) Dla skrajnych statystyk pozycyjnych mamy

Ξ1:n(0) = −n− 1

2
≤ E

X1:n − µ
∆

≤ Ξ1:n(1) = −1

2
,

Ξn:n(0) =
1

2
≤ E

Xn:n − µ
∆

≤ Ξn:n(1) =
n− 1

2
.

(ii) Dla sa̧siaduja̧cych ze skrajnymi statystyk pozycyjnych, pochodne Ξ′r:n(u), r = 2, n−1, maja̧
jedyne miejsca zerowe, odpowiednio v1(2) i u1(n− 1) = 1− v1(2), i zachodza̧ nierówności

Ξ2:n(v1(2)) ≤ E
X2:n − µ

∆
≤ Ξ2:n(0) =

1

2
,

Ξn−1:n(1) = −1

2
≤ E

Xn−1:n − µ
∆

≤ Ξn−1:n(u1(n− 1)).
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(iii) Dla 3 ≤ r ≤ n− 2, Ξ′r:n(u) ma dwa miejsca zerowe u1(r) < v1(r) w (0, 1), i wówczas

Ξr:n(v1(r)) ≤ E
Xr:n − µ

∆
≤ Ξr:n(u1(r)).

W podobny sposób szacujemy wartości oczekiwane różnic dwu statystyk pozycyjnych, uciȩ-
tych i Winsoryzowanych średnich, ich różnic oraz średniego absolutnego odchylenia od me-
diany.

Oszacowania wariancji kombinacji liniowych statystyk

pozycyjnych

Rozważamy niezależne zmienne losowe X1, . . . , Xn o tym samym rozk ladzie z niezerowa̧ i
skończona̧ wariancja̧. Definiujemy

Φc(u, v) =

[
n−1∑
i=0

n

i+ 1

(
i+1∑
k=1

ck

)(
n− 1

i

)
ui(1− u)n−1−i

]

×

[
n−1∑
j=0

n

n− j

(
n∑

m=j+1

cm

)(
n− 1

j

)
vj(1− v)n−1−j

]

−
n−2∑
i=0

n−2∑
j=i

n(n− 1)

(i+ 1)(n− 1− j)

(
i+1∑
k=1

ck

)(
n∑

m=j+2

cm

)

× n!

i!(j − i)!(n− j)!
ui(v − u)j−i(1− v)n−2−j.

dla 0 < u ≤ v < 1. Niech Ψc(u) = Φc(u, u).

Twierdzenie (patrz Twierdzenie 3) Przy powyższych za lożeniach i oznaczeniach, zachodzi

Var(
∑n

i=1 ciXi:n)

Var X1

≤ sup
0<u≤v<1

Φc(u, v).

Ponadto, jeżeli
sup

0<u≤v<1
Φc(u, v) = sup

0<u<1
Ψc(u),

to powyższe oszacowanie jest optymalne.
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Pokazujemy także, że dolne oszacowanie ilorazu
Var(

∑n
i=1 ciXi:n)

VarX1
jest równe 0 wtedy i tylko

wtedy, gdy c1cn = 0. W przypadku spacji Si:n = Xi+1:n −Xi:n, 1 ≤ i < n < ∞, funkcja Ψc

ma postać

Ψi:n(u) =

(
n

i

)
ui−1(1− u)n−i−1

[
1−

(
n

i

)
ui(1− u)n−i

]
.

Stwierdzenie (patrz Stwierdzenia 9 i 10) Nastȩpuja̧ce oszacowania sa̧ optymalne.
(i) Jeśli n ≥ 3, to

0 = Ψ1:n(1) ≤ Var(X2:n−X1:n)
VarX1

≤ Ψ1:n(0) = n,

0 = Ψn−1:n(0) ≤ Var(Xn:n−Xn−1:n)
VarX1

≤ Ψn−1:n(1) = n.

(ii) Jeśli n ≥ 4 i 2 ≤ i ≤ n − 2, to pochodna Ψ′i:n ma albo jedno albo trzy miejsca zerowe, i
wtedy

0 = Ψi:n(0) = Ψi:n(1) ≤ V ar(Xi+1:n −Xi:n)

Var X1

≤ Ψi:n(u0),

gdzie u0 jest albo pojedynczym miejscem zerowym pochodnej albo pierwszym ba̧dź trzecim
miejscem zerowym Ψ′i:n. Spośród nich wybierany jest ten argument, dla którego wartość Ψi:n

jest wiȩksza.

Przypadek n = 2 oraz i = 1, dla którego dolne oszacowanie jest dodatnie, nie jest omaw-
iany w tym streszczeniu.

Wartości oczekiwane kombinacji liniowych rekordów

Niech X1, X2, . . . bȩda̧ niezależnymi zmiennymi losowymi o tym samym rozk ladzie ze skończo-
na̧ średnia̧ µ. Ponadto, niech R1,k, R2,k, . . . oznaczaja̧ odpowiednie wartości k-tych rekordów.
Za lóżmy, że ERn,k < ∞ dla pewnych ustalonych n i k. Poniżej opisujemy optymalne
dolne i górne oszacowania wartości oczekiwanych kombinacji liniowych k-tych rekordów
E
[∑n

i=1 ci(Ri,k − µ
)]

, scentrowanych wzglȩdem średniej populacji, i wyrażonych w jednos-
tkach średniej różnicy Giniego ∆ = E|X1 −X2|. Używamy nastȩpuja̧cych oznaczeń

Ξn,k(u) =
1

2u

[
(1− u)k−1

n−1∑
i=0

[
− k ln(1− u)

]i
i!

− 1

]
,

Ξc,k(u) =
n∑
i=1

ciΞi,k(u) =
1

2u

[
(1− u)k−1

n−1∑
i=0

(
n∑

j=i+1

cj

)
[−k ln(1− u)]i

i!
−

n∑
j=1

cj

]
,
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gdzie c = (c1, . . . , cn) ∈ Rn.

Twierdzenie (patrz Twierdzenie 5) Przy powyższych za lożeniach i oznaczeniach nastȩpuja̧ce
oszacowania

inf
0<u<1

Ξc,k(u) ≤
E
[∑n

i=1 ci(Ri,k − µ
)]

∆
≤ sup

0<u<1
Ξc,k(u)

sa̧ optymalne.
Warunki osia̧galności sa̧ podobne do tych z problemów oszacowywania wartości oczeki-

wanych L-statystyk. Jedyna różnica polega na tym, że dok ladne wartości w punktach 0 i 1
sa̧ zasta̧pione przez odpowiednie granice, a dyskretne rozk lady dwu-punktowe sa̧ zasta̧pione
przez ich cia̧g le przybliżenia. Zgodnie z powyższym, wszystkie oszacowania dla kombinacji
rekordów sa̧ osia̧gane w granicy. Dla pojedynczych rekordów Rn,k, zachodzi Ξc,k = Ξn,k.

Stwierdzenie (patrz Stwierdzenie 12) Dla różnych liczb naturalych n ≥ 2 i k ≥ 1, mamy
nastȩpuja̧ce optymalne oszacowania.
(i) Dla n ≥ 2 i k = 1, zachodzi

1

2
= Ξn,1(0+) ≤ E(Rn,1 − µ)

∆
≤ Ξn,1(1−) =∞.

(ii) Jeżeli n = k = 2, to

−1

2
= Ξ2,2(1−) ≤ E(R2,2 − µ)

∆
≤ Ξ2,2(0+) =

1

2
.

(iii) Dla n ≥ 3 i k = 2

−1

2
= lim

u↗1−
Ξn,2(1−) ≤ E(Rn,2 − µ)

∆
≤ Ξn,2(u1) >

1

2
,

gdzie u1 jest jedynym miejscem zerowym Ξ′n,2 w przedziale (0, 1).
(iv) Dla n = 2 oraz k ≥ 3

−1

2
> Ξ2,k(u1) ≤ E(R2,k − µ)

∆
≤ Ξ2,k(0+) =

1

2
,

gdzie u1 ∈ (0, 1) jest jedynym miejscem zerowym Ξ′2,k in (0, 1).
(v) Dla k ≥ 3 i n ≥ 3, mamy

−1

2
> Ξn,k(u2) ≤ E(Rn,k − µ)

∆
≤ Ξn,k(u1) >

1

2
,

gdzie 0 < u1 < u2 < 1 sa̧ jedynymi rozwia̧zaniami równania Ξ′n,k(u) = 0.

Podobnie wyznaczamy oszacowania wartości oczekiwanych różnic wartości k-tych rekordów
E(Rn,k −Rm,k), 1 ≤ m < n.

117



Oszacowania wariancji kombinacji liniowych rekordów

Niech X1, X2, . . . bȩda̧ niezależnymi zmiennymi losowymi o tym samym rozk ladzie i skoń-
czonym drugim momencie. Za lóżmy też, że ER2

n,k <∞. Dla danych liczb naturalnych n i k,
oraz dla ustalonego niezerowego wektora c = (c1, . . . , cn) ∈ Rn, definiujemy funkcjȩ

Φc,k(u, v) =
(1− v)k−1

u

{[
n∑
j=1

cj − (1− u)k
n−1∑
i=0

(
n∑

j=i+1

cj

)
[−k ln(1− u)]i

i!

]

×
n−1∑
i=0

(
n∑

j=i+1

cj

)
[−k ln(1− v)]i

i!

−
∑

1≤i<j≤n

cicj

j−i−1∑
p=0

p∑
q=0

(−1)q[−k ln(1− u)]i+q[−k ln(1− v)]p−q

(i− 1)!q!(p− q)!(p+ i)

}

określona̧ na trójka̧cie 0 < u ≤ v < 1, a także Ψc,k(u) = Φc,k(u, u), 0 < u < 1.

Twierdzenie (patrz Twierdzenie 6) Przy powyższych warunkach i oznaczeniach mamy

Var(
∑n

i=1 ciRi,k)

Var X1

≤ sup
0<u≤v<1

Φc,k(u, v).

Ponadto, jeśli

sup
0<u≤v<1

Φc,k(u, v) = sup
0<u<1

Ψc,k(u),

to oszacowanie jest optymalne.

Dowodzimy także, że dolne oszacowania wariancji kombinacji liniowych k-tych rekordów sa̧
równe 0, za wyja̧tkiem przypadku k = 1 i c1 6= 0. Dla spacji k-tych rekordów Rm+1,k −Rm,k,
funkcja Ψc,k ma prostsza̧ postać

Ψm,k(u) =
[−k ln(1− u)]m(1− u)k−1

um!

[
1− (1− u)k[−k ln(1− u)]m

m!

]
.

Stwierdzenie (patrz Stwierdzenie 14) Nastȩpuja̧ce oszacowania sa̧ optymalne.
(i) Jeśli k = 1 i m ≥ 1, to

Var(Rm+1,1 −Rm,1)

Var X1

≤ Ψm,1(1−) = +∞.

118



(ii) Jeżeli m = 1 oraz k ≥ 2, to

Var(R2,k −R1,k)

Var X1

≤ Ψ1,k(0+) = k.

(iii) Jeśli albo k = 2 ≤ m albo k ≥ 3 oraz 2 ≤ m ≤ 2
3
k, to

Var(Rm+1,k −Rm,k)

Var X1

≤ Ψm,k(u0),

gdzie 0 < u0 < 1 jest jedynym rozwia̧zaniem równania Ψ′m,k(u) = 0.

(iv) Jeżeli wreszcie k ≥ 3 oraz m > 2
3
k, to

Var(Rm+1,k −Rm,k)

Var X1

≤ Ψm,k(u0),

gdzie 0 < u0 < 1 argumentem, dla którego funkcja Ψm,k osia̧ga swoje globalne maksimum na
przedziale (0, 1).

W ostatnim przypadku, formalnie możemy jedynie udowodnić, że Ψm,k ma co najwyżej trzy
lokalne maksima.
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